Goto

Collaborating Authors

 Fu, Luoyi


Exploring and Verbalizing Academic Ideas by Concept Co-occurrence

arXiv.org Artificial Intelligence

Researchers usually come up with new ideas only after thoroughly comprehending vast quantities of literature. The difficulty of this procedure is exacerbated by the fact that the number of academic publications is growing exponentially. In this study, we devise a framework based on concept co-occurrence for academic idea inspiration, which has been integrated into a research assistant system. From our perspective, the fusion of two concepts that co-occur in an academic paper can be regarded as an important way of the emergence of a new idea. We construct evolving concept graphs according to the co-occurrence relationship of concepts from 20 disciplines or topics. Then we design a temporal link prediction method based on masked language model to explore potential connections between different concepts. To verbalize the newly discovered connections, we also utilize the pretrained language model to generate a description of an idea based on a new data structure called co-occurrence citation quintuple. We evaluate our proposed system using both automatic metrics and human assessment. The results demonstrate that our system has broad prospects and can assist researchers in expediting the process of discovering new ideas.


Covidia: COVID-19 Interdisciplinary Academic Knowledge Graph

arXiv.org Artificial Intelligence

The pandemic of COVID-19 has inspired extensive works across different research fields. Existing literature and knowledge platforms on COVID-19 only focus on collecting papers on biology and medicine, neglecting the interdisciplinary efforts, which hurdles knowledge sharing and research collaborations between fields to address the problem. Studying interdisciplinary researches requires effective paper category classification and efficient cross-domain knowledge extraction and integration. In this work, we propose Covidia, COVID-19 interdisciplinary academic knowledge graph to bridge the gap between knowledge of COVID-19 on different domains. We design frameworks based on contrastive learning for disciplinary classification, and propose a new academic knowledge graph scheme for entity extraction, relation classification and ontology management in accordance with interdisciplinary researches. Based on Covidia, we also establish knowledge discovery benchmarks for finding COVID-19 research communities and predicting potential links.


FMGNN: Fused Manifold Graph Neural Network

arXiv.org Artificial Intelligence

Graph representation learning has been widely studied and demonstrated effectiveness in various graph tasks. Most existing works embed graph data in the Euclidean space, while recent works extend the embedding models to hyperbolic or spherical spaces to achieve better performance on graphs with complex structures, such as hierarchical or ring structures. Fusing the embedding from different manifolds can further take advantage of the embedding capabilities over different graph structures. However, existing embedding fusion methods mostly focus on concatenating or summing up the output embeddings, without considering interacting and aligning the embeddings of the same vertices on different manifolds, which can lead to distortion and impression in the final fusion results. Besides, it is also challenging to fuse the embeddings of the same vertices from different coordinate systems. In face of these challenges, we propose the Fused Manifold Graph Neural Network (FMGNN), a novel GNN architecture that embeds graphs into different Riemannian manifolds with interaction and alignment among these manifolds during training and fuses the vertex embeddings through the distances on different manifolds between vertices and selected landmarks, geometric coresets. Our experiments demonstrate that FMGNN yields superior performance over strong baselines on the benchmarks of node classification and link prediction tasks.


PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue Model

arXiv.org Artificial Intelligence

In the research of end-to-end dialogue systems, using real-world knowledge to generate natural, fluent, and human-like utterances with correct answers is crucial. However, domain-specific conversational dialogue systems may be incoherent and introduce erroneous external information to answer questions due to the out-of-vocabulary issue or the wrong knowledge from the parameters of the neural network. In this work, we propose PK-Chat, a Pointer network guided Knowledge-driven generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs. The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge. Moreover, based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences. Finally, an academic dialogue benchmark is constructed to evaluate the quality of dialogue systems in academic scenarios and the source code is available online.


Temporal Knowledge Graph Reasoning with Historical Contrastive Learning

arXiv.org Artificial Intelligence

Temporal knowledge graph, serving as an effective way to store and model dynamic relations, shows promising prospects in event forecasting. However, most temporal knowledge graph reasoning methods are highly dependent on the recurrence or periodicity of events, which brings challenges to inferring future events related to entities that lack historical interaction. In fact, the current moment is often the combined effect of a small part of historical information and those unobserved underlying factors. To this end, we propose a new event forecasting model called Contrastive Event Network (CENET), based on a novel training framework of historical contrastive learning. CENET learns both the historical and non-historical dependency to distinguish the most potential entities that can best match the given query. Simultaneously, it trains representations of queries to investigate whether the current moment depends more on historical or non-historical events by launching contrastive learning. The representations further help train a binary classifier whose output is a boolean mask to indicate related entities in the search space. During the inference process, CENET employs a mask-based strategy to generate the final results. We evaluate our proposed model on five benchmark graphs. The results demonstrate that CENET significantly outperforms all existing methods in most metrics, achieving at least $8.3\%$ relative improvement of Hits@1 over previous state-of-the-art baselines on event-based datasets.


High-Order Relation Construction and Mining for Graph Matching

arXiv.org Artificial Intelligence

Graph matching pairs corresponding nodes across two or more graphs. The problem is difficult as it is hard to capture the structural similarity across graphs, especially on large graphs. We propose to incorporate high-order information for matching large-scale graphs. Iterated line graphs are introduced for the first time to describe such high-order information, based on which we present a new graph matching method, called High-order Graph Matching Network (HGMN), to learn not only the local structural correspondence, but also the hyperedge relations across graphs. We theoretically prove that iterated line graphs are more expressive than graph convolution networks in terms of aligning nodes. By imposing practical constraints, HGMN is made scalable to large-scale graphs. Experimental results on a variety of settings have shown that, HGMN acquires more accurate matching results than the state-of-the-art, verifying our method effectively captures the structural similarity across different graphs.


DRIMUX: Dynamic Rumor Influence Minimization with User Experience in Social Networks

AAAI Conferences

Rumor blocking is a serious problem in large-scale social networks. Malicious rumors could cause chaos in society and hence need to be blocked as soon as possible after being detected. In this paper, we propose a model of dynamic rumor influence minimization with user experience (DRIMUX). Our goal is to minimize the influence of the rumor (i.e., the number of users that have accepted and sent the rumor) by blocking a certain subset of nodes. A dynamic Ising propagation model considering both the global popularity and individual attraction of the rumor is presented based on realistic scenario. In addition, different from existing problems of influence minimization, we take into account the constraint of user experience utility. Specifically, each node is assigned a tolerance time threshold. If the blocking time of each user exceeds that threshold, the utility of the network will decrease. Under this constraint, we then formulate the problem as a network inference problem with survival theory, and propose solutions based on maximum likelihood principle. Experiments are implemented based on large-scale real world networks and validate the effectiveness of our method.


Modeling Topic-Level Academic Influence in Scientific Literatures

AAAI Conferences

Scientific articles are not born equal. Some generate an entire discipline while others make relatively fewer contributions. When reviewing scientific literatures, it would be useful to identify those important articles and understand how they influence others. In this paper, we introduce J-Index, a quantitative metric modeling topic-level academic influence. J-Index is calculated based on the novelty of each article as well as its contributions to the articles where it is cited. We devise a generative model named Reference Topic Model (RefTM) which jointly utilizes the textual content and citation information in scientific literatures. We show how to learn RefTM to discover both the novelty of each paper and the strength of each citation. Experiments on a collection of more than 420,000 research papers demonstrate that RefTM outperforms the state-of-the-art approaches in terms of topic coherence as well as prediction performance, and validate J-Index's effectiveness of capturing topic-level academic influence in scientific literatures.