Goto

Collaborating Authors

 Freund, Yoav


Muffled Semi-Supervised Learning

arXiv.org Machine Learning

We explore a novel approach to semi-supervised learning. This approach is contrary to the common approach in that the unlabeled examples serve to "muffle," rather than enhance, the guidance provided by the labeled examples. We provide several variants of the basic algorithm and show experimentally that they can achieve significantly higher AUC than boosted trees, random forests and logistic regression when unlabeled examples are available.


Scalable Semi-Supervised Aggregation of Classifiers

Neural Information Processing Systems

We present and empirically evaluate an efficient algorithm that learns to aggregate the predictions of an ensemble of binary classifiers. The algorithm uses the structure of the ensemble predictions on unlabeled data to yield significant performance improvements. It does this without making assumptions on the structure or origin of the ensemble, without parameters, and as scalably as linear learning. We empirically demonstrate these performance gains with random forests.


Optimally Combining Classifiers Using Unlabeled Data

arXiv.org Machine Learning

We develop a worst-case analysis of aggregation of classifier ensembles for binary classification. The task of predicting to minimize error is formulated as a game played over a given set of unlabeled data (a transductive setting), where prior label information is encoded as constraints on the game. The minimax solution of this game identifies cases where a weighted combination of the classifiers can perform significantly better than any single classifier.


PAC-Bayes with Minimax for Confidence-Rated Transduction

arXiv.org Machine Learning

We consider using an ensemble of binary classifiers for transductive prediction, when unlabeled test data are known in advance. We derive minimax optimal rules for confidence-rated prediction in this setting. By using PAC-Bayes analysis on these rules, we obtain data-dependent performance guarantees without distributional assumptions on the data. Our analysis techniques are readily extended to a setting in which the predictor is allowed to abstain.


The Fast Convergence of Incremental PCA

arXiv.org Machine Learning

We consider a situation in which we see samples in $\mathbb{R}^d$ drawn i.i.d. from some distribution with mean zero and unknown covariance A. We wish to compute the top eigenvector of A in an incremental fashion - with an algorithm that maintains an estimate of the top eigenvector in O(d) space, and incrementally adjusts the estimate with each new data point that arrives. Two classical such schemes are due to Krasulina (1969) and Oja (1983). We give finite-sample convergence rates for both.


The Fast Convergence of Incremental PCA

Neural Information Processing Systems

We prove the first finite-sample convergence rates for any incremental PCA algorithm using sub-quadratic time and memory per iteration. The algorithm analyzed is Oja's learning rule, an efficient and well-known scheme for estimating the top principal component. Our analysis of this non-convex problem yields expected and high-probability convergence rates of $\tilde{O}(1/n)$ through a novel technique. We relate our guarantees to existing rates for stochastic gradient descent on strongly convex functions, and extend those results. We also include experiments which demonstrate convergence behaviors predicted by our analysis.


An Online Learning-based Framework for Tracking

arXiv.org Machine Learning

We study the tracking problem, namely, estimating the hidden state of an object over time, from unreliable and noisy measurements. The standard framework for the tracking problem is the generative framework, which is the basis of solutions such as the Bayesian algorithm and its approximation, the particle filters. However, these solutions can be very sensitive to model mismatches. In this paper, motivated by online learning, we introduce a new framework for tracking. We provide an efficient tracking algorithm for this framework. We provide experimental results comparing our algorithm to the Bayesian algorithm on simulated data. Our experiments show that when there are slight model mismatches, our algorithm outperforms the Bayesian algorithm.


Particle Filtering on the Audio Localization Manifold

arXiv.org Artificial Intelligence

We present a novel particle filtering algorithm for tracking a moving sound source using a microphone array. If there are N microphones in the array, we track all $N \choose 2$ delays with a single particle filter over time. Since it is known that tracking in high dimensions is rife with difficulties, we instead integrate into our particle filter a model of the low dimensional manifold that these delays lie on. Our manifold model is based off of work on modeling low dimensional manifolds via random projection trees [1]. In addition, we also introduce a new weighting scheme to our particle filtering algorithm based on recent advancements in online learning. We show that our novel TDOA tracking algorithm that integrates a manifold model can greatly outperform standard particle filters on this audio tracking task.


Tracking using explanation-based modeling

arXiv.org Artificial Intelligence

We study the tracking problem, namely, estimating the hidden state of an object over time, from unreliable and noisy measurements. The standard framework for the tracking problem is the generative framework, which is the basis of solutions such as the Bayesian algorithm and its approximation, the particle filters. However, the problem with these solutions is that they are very sensitive to model mismatches. In this paper, motivated by online learning, we introduce a new framework -- an {\em explanatory} framework -- for tracking. We provide an efficient tracking algorithm for this framework. We provide experimental results comparing our algorithm to the Bayesian algorithm on simulated data. Our experiments show that when there are slight model mismatches, our algorithm vastly outperforms the Bayesian algorithm.


A parameter-free hedging algorithm

arXiv.org Artificial Intelligence

We study the problem of decision-theoretic online learning (DTOL). Motivated by practical applications, we focus on DTOL when the number of actions is very large. Previous algorithms for learning in this framework have a tunable learning rate parameter, and a barrier to using online-learning in practical applications is that it is not understood how to set this parameter optimally, particularly when the number of actions is large. In this paper, we offer a clean solution by proposing a novel and completely parameter-free algorithm for DTOL. We introduce a new notion of regret, which is more natural for applications with a large number of actions. We show that our algorithm achieves good performance with respect to this new notion of regret; in addition, it also achieves performance close to that of the best bounds achieved by previous algorithms with optimally-tuned parameters, according to previous notions of regret.