Goto

Collaborating Authors

 Francis Bach


On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport

Neural Information Processing Systems

Many tasks in machine learning and signal processing can be solved by minimizing a convex function of a measure. This includes sparse spikes deconvolution or training a neural network with a single hidden layer. For these problems, we study a simple minimization method: the unknown measure is discretized into a mixture of particles and a continuous-time gradient descent is performed on their weights and positions. This is an idealization of the usual way to train neural networks with a large hidden layer. We show that, when initialized correctly and in the many-particle limit, this gradient flow, although non-convex, converges to global minimizers. The proof involves Wasserstein gradient flows, a by-product of optimal transport theory. Numerical experiments show that this asymptotic behavior is already at play for a reasonable number of particles, even in high dimension.


SING: Symbol-to-Instrument Neural Generator

Neural Information Processing Systems

Recent progress in deep learning for audio synthesis opens the way to models that directly produce the waveform, shifting away from the traditional paradigm of relying on vocoders or MIDI synthesizers for speech or music generation. Despite their successes, current state-of-the-art neural audio synthesizers such as WaveNet and SampleRNN [24, 17] suffer from prohibitive training and inference times because they are based on autoregressive models that generate audio samples one at a time at a rate of 16kHz. In this work, we study the more computationally efficient alternative of generating the waveform frame-by-frame with large strides. We present SING, a lightweight neural audio synthesizer for the original task of generating musical notes given desired instrument, pitch and velocity. Our model is trained end-to-end to generate notes from nearly 1000 instruments with a single decoder, thanks to a new loss function that minimizes the distances between the log spectrograms of the generated and target waveforms. On the generalization task of synthesizing notes for pairs of pitch and instrument not seen during training, SING produces audio with significantly improved perceptual quality compared to a state-of-the-art autoencoder based on WaveNet [4] as measured by a Mean Opinion Score (MOS), and is about 32 times faster for training and 2, 500 times faster for inference.


Rest-Katyusha: Exploiting the Solution's Structure via Scheduled Restart Schemes

Neural Information Processing Systems

We propose a structure-adaptive variant of a state-of-the-art stochastic variancereduced gradient algorithm Katyusha for regularized empirical risk minimization. The proposed method is able to exploit the intrinsic low-dimensional structure of the solution, such as sparsity or low rank which is enforced by a non-smooth regularization, to achieve even faster convergence rate. This provable algorithmic improvement is done by restarting the Katyusha algorithm according to restricted strong-convexity (RSC) constants. We also propose an adaptive-restart variant which is able to estimate the RSC on the fly and adjust the restart period automatically. We demonstrate the effectiveness of our approach via numerical experiments.


Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes

Neural Information Processing Systems

We consider stochastic gradient descent (SGD) for least-squares regression with potentially several passes over the data. While several passes have been widely reported to perform practically better in terms of predictive performance on unseen data, the existing theoretical analysis of SGD suggests that a single pass is statistically optimal. While this is true for low-dimensional easy problems, we show that for hard problems, multiple passes lead to statistically optimal predictions while single pass does not; we also show that in these hard models, the optimal number of passes over the data increases with sample size. In order to define the notion of hardness and show that our predictive performances are optimal, we consider potentially infinite-dimensional models and notions typically associated to kernel methods, namely, the decay of eigenvalues of the covariance matrix of the features and the complexity of the optimal predictor as measured through the covariance matrix. We illustrate our results on synthetic experiments with non-linear kernel methods and on a classical benchmark with a linear model.


Integration Methods and Optimization Algorithms

Neural Information Processing Systems

We show that accelerated optimization methods can be seen as particular instances of multi-step integration schemes from numerical analysis, applied to the gradient flow equation. Compared with recent advances in this vein, the differential equation considered here is the basic gradient flow, and we derive a class of multi-step schemes which includes accelerated algorithms, using classical conditions from numerical analysis. Multi-step schemes integrate the differential equation using larger step sizes, which intuitively explains the acceleration phenomenon.


On Structured Prediction Theory with Calibrated Convex Surrogate Losses

Neural Information Processing Systems

We provide novel theoretical insights on structured prediction in the context of efficient convex surrogate loss minimization with consistency guarantees. For any task loss, we construct a convex surrogate that can be optimized via stochastic gradient descent and we prove tight bounds on the so-called "calibration function" relating the excess surrogate risk to the actual risk. In contrast to prior related work, we carefully monitor the effect of the exponential number of classes in the learning guarantees as well as on the optimization complexity. As an interesting consequence, we formalize the intuition that some task losses make learning harder than others, and that the classical 0-1 loss is ill-suited for structured prediction.