Francis Bach
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums
Hadrien Hendrikx, Francis Bach, Laurent Massoulié
Modern large-scale finite-sum optimization relies on two key aspects: distribution and stochastic updates. For smooth and strongly convex problems, existing decentralized algorithms are slower than modern accelerated variance-reduced stochastic algorithms when run on a single machine, and are therefore not efficient. Centralized algorithms are fast, but their scaling is limited by global aggregation steps that result in communication bottlenecks. In this work, we propose an efficient Accelerated Decentralized stochastic algorithm for Finite Sums named ADFS, which uses local stochastic proximal updates and randomized pairwise communications between nodes. On n machines, ADFS learns from nm samples in the same time it takes optimal algorithms to learn from m samples on one machine. This scaling holds until a critical network size is reached, which depends on communication delays, on the number of samples m, and on the network topology. We provide a theoretical analysis based on a novel augmented graph approach combined with a precise evaluation of synchronization times and an extension of the accelerated proximal coordinate gradient algorithm to arbitrary sampling. We illustrate the improvement of ADFS over state-of-the-art decentralized approaches with experiments.
Localized Structured Prediction
Carlo Ciliberto, Francis Bach, Alessandro Rudi
Key to structured prediction is exploiting the problem's structure to simplify the learning process. A major challenge arises when data exhibit a local structure (i.e., are made "by parts") that can be leveraged to better approximate the relation between (parts of) the input and (parts of) the output. Recent literature on signal processing, and in particular computer vision, shows that capturing these aspects is indeed essential to achieve state-of-the-art performance. However, in this context algorithms are typically derived on a case-by-case basis. In this work we propose the first theoretical framework to deal with part-based data from a general perspective and study a novel method within the setting of statistical learning theory. Our analysis is novel in that it explicitly quantifies the benefits of leveraging the part-based structure of a problem on the learning rates of the proposed estimator.
Parameter Learning for Log-supermodular Distributions
Tatiana Shpakova, Francis Bach
We consider log-supermodular models on binary variables, which are probabilistic models with negative log-densities which are submodular. These models provide probabilistic interpretations of common combinatorial optimization tasks such as image segmentation. In this paper, we focus primarily on parameter estimation in the models from known upper-bounds on the intractable log-partition function. We show that the bound based on separable optimization on the base polytope of the submodular function is always inferior to a bound based on "perturb-and-MAP" ideas. Then, to learn parameters, given that our approximation of the log-partition function is an expectation (over our own randomization), we use a stochastic subgradient technique to maximize a lower-bound on the log-likelihood. This can also be extended to conditional maximum likelihood. We illustrate our new results in a set of experiments in binary image denoising, where we highlight the flexibility of a probabilistic model to learn with missing data.
Regularized Nonlinear Acceleration
Damien Scieur, Alexandre d'Aspremont, Francis Bach
We describe a convergence acceleration technique for generic optimization problems. Our scheme computes estimates of the optimum from a nonlinear average of the iterates produced by any optimization method. The weights in this average are computed via a simple and small linear system, whose solution can be updated online. This acceleration scheme runs in parallel to the base algorithm, providing improved estimates of the solution on the fly, while the original optimization method is running. Numerical experiments are detailed on classical classification problems.
PAC-Bayesian Theory Meets Bayesian Inference
Pascal Germain, Francis Bach, Alexandre Lacoste, Simon Lacoste-Julien
That is, for the negative log-likelihood loss function, we show that the minimization of PAC-Bayesian generalization risk bounds maximizes the Bayesian marginal likelihood. This provides an alternative explanation to the Bayesian Occam's razor criteria, under the assumption that the data is generated by an i.i.d.
Stochastic Optimization for Large-scale Optimal Transport
Aude Genevay, Marco Cuturi, Gabriel Peyré, Francis Bach
Optimal transport (OT) defines a powerful framework to compare probability distributions in a geometrically faithful way. However, the practical impact of OT is still limited because of its computational burden. We propose a new class of stochastic optimization algorithms to cope with large-scale OT problems. These methods can handle arbitrary distributions (either discrete or continuous) as long as one is able to draw samples from them, which is the typical setup in highdimensional learning problems.
Stochastic Variance Reduction Methods for Saddle-Point Problems
Balamurugan Palaniappan, Francis Bach
We consider convex-concave saddle-point problems where the objective functions may be split in many components, and extend recent stochastic variance reduction methods (such as SVRG or SAGA) to provide the first large-scale linearly convergent algorithms for this class of problems which are common in machine learning. While the algorithmic extension is straightforward, it comes with challenges and opportunities: (a) the convex minimization analysis does not apply and we use the notion of monotone operators to prove convergence, showing in particular that the same algorithm applies to a larger class of problems, such as variational inequalities, (b) there are two notions of splits, in terms of functions, or in terms of partial derivatives, (c) the split does need to be done with convex-concave terms, (d) non-uniform sampling is key to an efficient algorithm, both in theory and practice, and (e) these incremental algorithms can be easily accelerated using a simple extension of the "catalyst" framework, leading to an algorithm which is always superior to accelerated batch algorithms.
Integration Methods and Optimization Algorithms
Damien Scieur, Vincent Roulet, Francis Bach, Alexandre d'Aspremont
We show that accelerated optimization methods can be seen as particular instances of multi-step integration schemes from numerical analysis, applied to the gradient flow equation. Compared with recent advances in this vein, the differential equation considered here is the basic gradient flow, and we derive a class of multi-step schemes which includes accelerated algorithms, using classical conditions from numerical analysis. Multi-step schemes integrate the differential equation using larger step sizes, which intuitively explains the acceleration phenomenon.
On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport
Lénaïc Chizat, Francis Bach
Many tasks in machine learning and signal processing can be solved by minimizing a convex function of a measure. This includes sparse spikes deconvolution or training a neural network with a single hidden layer. For these problems, we study a simple minimization method: the unknown measure is discretized into a mixture of particles and a continuous-time gradient descent is performed on their weights and positions. This is an idealization of the usual way to train neural networks with a large hidden layer. We show that, when initialized correctly and in the many-particle limit, this gradient flow, although non-convex, converges to global minimizers. The proof involves Wasserstein gradient flows, a by-product of optimal transport theory. Numerical experiments show that this asymptotic behavior is already at play for a reasonable number of particles, even in high dimension.
On Structured Prediction Theory with Calibrated Convex Surrogate Losses
Anton Osokin, Francis Bach, Simon Lacoste-Julien
We provide novel theoretical insights on structured prediction in the context of efficient convex surrogate loss minimization with consistency guarantees. For any task loss, we construct a convex surrogate that can be optimized via stochastic gradient descent and we prove tight bounds on the so-called "calibration function" relating the excess surrogate risk to the actual risk. In contrast to prior related work, we carefully monitor the effect of the exponential number of classes in the learning guarantees as well as on the optimization complexity. As an interesting consequence, we formalize the intuition that some task losses make learning harder than others, and that the classical 0-1 loss is ill-suited for structured prediction.