Plotting

 Fleet, David J.


Lattice Particle Filters

arXiv.org Artificial Intelligence

A standard approach to approximate inference in state-space models isto apply a particle filter, e.g., the Condensation Algorithm.However, the performance of particle filters often varies significantlydue to their stochastic nature.We present a class of algorithms, called lattice particle filters, thatcircumvent this difficulty by placing the particles deterministicallyaccording to a Quasi-Monte Carlo integration rule.We describe a practical realization of this idea, discuss itstheoretical properties, and its efficiency.Experimental results with a synthetic 2D tracking problem show that thelattice particle filter is equivalent to a conventional particle filterthat has between 10 and 60% more particles, depending ontheir "sparsity" in the state-space.We also present results on inferring 3D human motion frommoving light displays.


Hamming Distance Metric Learning

Neural Information Processing Systems

Motivated by large-scale multimedia applications we propose to learn mappings from high-dimensional data to binary codes that preserve semantic similarity. Binary codes are well suited to large-scale applications as they are storage efficient and permit exact sub-linear kNN search. The framework is applicable to broad families of mappings, and uses a flexible form of triplet ranking loss. We overcome discontinuous optimization of the discrete mappings by minimizing a piecewise-smooth upper bound on empirical loss, inspired by latent structural SVMs. We develop a new loss-augmented inference algorithm that is quadratic in the code length. We show strong retrieval performance on CIFAR-10 and MNIST, with promising classification results using no more than kNN on the binary codes.