Fischer, Ian
Learnability for the Information Bottleneck
Wu, Tailin, Fischer, Ian, Chuang, Isaac L., Tegmark, Max
The Information Bottleneck (IB) method (\cite{tishby2000information}) provides an insightful and principled approach for balancing compression and prediction for representation learning. The IB objective $I(X;Z)-\beta I(Y;Z)$ employs a Lagrange multiplier $\beta$ to tune this trade-off. However, in practice, not only is $\beta$ chosen empirically without theoretical guidance, there is also a lack of theoretical understanding between $\beta$, learnability, the intrinsic nature of the dataset and model capacity. In this paper, we show that if $\beta$ is improperly chosen, learning cannot happen -- the trivial representation $P(Z|X)=P(Z)$ becomes the global minimum of the IB objective. We show how this can be avoided, by identifying a sharp phase transition between the unlearnable and the learnable which arises as $\beta$ is varied. This phase transition defines the concept of IB-Learnability. We prove several sufficient conditions for IB-Learnability, which provides theoretical guidance for choosing a good $\beta$. We further show that IB-learnability is determined by the largest confident, typical, and imbalanced subset of the examples (the conspicuous subset), and discuss its relation with model capacity. We give practical algorithms to estimate the minimum $\beta$ for a given dataset. We also empirically demonstrate our theoretical conditions with analyses of synthetic datasets, MNIST, and CIFAR10.
Dueling Decoders: Regularizing Variational Autoencoder Latent Spaces
Seybold, Bryan, Fertig, Emily, Alemi, Alex, Fischer, Ian
Variational autoencoders learn unsupervised data representations, but these models frequently converge to minima that fail to preserve meaningful semantic information. For example, variational autoencoders with autoregressive decoders often collapse into autodecoders, where they learn to ignore the encoder input. In this work, we demonstrate that adding an auxiliary decoder to regularize the latent space can prevent this collapse, but successful auxiliary decoding tasks are domain dependent. Auxiliary decoders can increase the amount of semantic information encoded in the latent space and visible in the reconstructions. The semantic information in the variational autoencoder's representation is only weakly correlated with its rate, distortion, or evidence lower bound. Compared to other popular strategies that modify the training objective, our regularization of the latent space generally increased the semantic information content.
GILBO: One Metric to Measure Them All
Alemi, Alexander A., Fischer, Ian
We propose a simple, tractable lower bound on the mutual information contained in the joint generative density of any latent variable generative model: the GILBO (Generative Information Lower BOund). It offers a data-independent measure of the complexity of the learned latent variable description, giving the log of the effective description length. It is well-defined for both VAEs and GANs. We compute the GILBO for 800 GANs and VAEs each trained on four datasets (MNIST, FashionMNIST, CIFAR-10 and CelebA) and discuss the results.
GILBO: One Metric to Measure Them All
Alemi, Alexander A., Fischer, Ian
We propose a simple, tractable lower bound on the mutual information contained in the joint generative density of any latent variable generative model: the GILBO (Generative Information Lower BOund). It offers a data-independent measure of the complexity of the learned latent variable description, giving the log of the effective description length. It is well-defined for both VAEs and GANs. We compute the GILBO for 800 GANs and VAEs each trained on four datasets (MNIST, FashionMNIST, CIFAR-10 and CelebA) and discuss the results.
Learning Latent Dynamics for Planning from Pixels
Hafner, Danijar, Lillicrap, Timothy, Fischer, Ian, Villegas, Ruben, Ha, David, Lee, Honglak, Davidson, James
Planning has been very successful for control tasks with known environment dynamics. To leverage planning in unknown environments, the agent needs to learn the dynamics from interactions with the world. However, learning dynamics models that are accurate enough for planning has been a long-standing challenge, especially in image-based domains. We propose the Deep Planning Network (PlaNet), a purely model-based agent that learns the environment dynamics from pixels and chooses actions through online planning in latent space. To achieve high performance, the dynamics model must accurately predict the rewards ahead for multiple time steps. We approach this problem using a latent dynamics model with both deterministic and stochastic transition function and a generalized variational inference objective that we name latent overshooting. Using only pixel observations, our agent solves continuous control tasks with contact dynamics, partial observability, and sparse rewards. PlaNet uses significantly fewer episodes and reaches final performance close to and sometimes higher than top model-free algorithms.
Uncertainty in the Variational Information Bottleneck
Alemi, Alexander A., Fischer, Ian, Dillon, Joshua V.
We present a simple case study, demonstrating that Variational Information Bottleneck (VIB) can improve a network's classification calibration as well as its ability to detect out-of-distribution data. Without explicitly being designed to do so, VIB gives two natural metrics for handling and quantifying uncertainty.
Generative Models of Visually Grounded Imagination
Vedantam, Ramakrishna, Fischer, Ian, Huang, Jonathan, Murphy, Kevin
It is easy for people to imagine what a man with pink hair looks like, even if they have never seen such a person before. We call the ability to create images of novel semantic concepts visually grounded imagination. In this paper, we show how we can modify variational auto-encoders to perform this task. Our method uses a novel training objective, and a novel product-of-experts inference network, which can handle partially specified (abstract) concepts in a principled and efficient way. We also propose a set of easy-to-compute evaluation metrics that capture our intuitive notions of what it means to have good visual imagination, namely correctness, coverage, and compositionality (the 3 C's). Finally, we perform a detailed comparison of our method with two existing joint image-attribute VAE methods (the JMVAE method of Suzuki et.al. and the BiVCCA method of Wang et.al.) by applying them to two datasets: the MNIST-with-attributes dataset (which we introduce here), and the CelebA dataset.
GILBO: One Metric to Measure Them All
Alemi, Alexander A., Fischer, Ian
We propose a simple, tractable lower bound on the mutual information contained in the joint generative density of any latent variable generative model: the GILBO (Generative Information Lower BOund). It offers a data independent measure of the complexity of the learned latent variable description, giving the log of the effective description length. It is well-defined for both VAEs and GANs. We compute the GILBO for 800 GANs and VAEs trained on MNIST and discuss the results.
Fixing a Broken ELBO
Alemi, Alexander A., Poole, Ben, Fischer, Ian, Dillon, Joshua V., Saurous, Rif A., Murphy, Kevin
Recent work in unsupervised representation learning has focused on learning deep directed latent-variable models. Fitting these models by maximizing the marginal likelihood or evidence is typically intractable, thus a common approximation is to maximize the evidence lower bound (ELBO) instead. However, maximum likelihood training (whether exact or approximate) does not necessarily result in a good latent representation, as we demonstrate both theoretically and empirically. In particular, we derive variational lower and upper bounds on the mutual information between the input and the latent variable, and use these bounds to derive a rate-distortion curve that characterizes the tradeoff between compression and reconstruction accuracy. Using this framework, we demonstrate that there is a family of models with identical ELBO, but different quantitative and qualitative characteristics. Our framework also suggests a simple new method to ensure that latent variable models with powerful stochastic decoders do not ignore their latent code.