Not enough data to create a plot.
Try a different view from the menu above.
Finin, Tim
Platys: From Position to Place-Oriented Mobile Computing
Zavala, Laura (Medgar Evers College, City University of New York) | Murukannaiah, Pradeep K. (North Carolina State University) | Poosamani, Nithyananthan (North Carolina State University.) | Finin, Tim (University of Maryland, Baltimore County) | Joshi, Anupam (University of Maryland, Baltimore County) | Rhee, Injong (North Carolina State University, Raleigh) | Singh, Munindar P. (North Carolina State University)
The Platys project focuses on developing a high-level, semantic notion of location called place. A place, unlike a geospatial position, derives its meaning from a user’s actions and interactions in addition to the physical location where they occur. Our aim is to enable the construction of a large variety of applications that take advantage of place to render relevant content and functionality and thus, improve user experience. We consider elements of context that are particularly related to mobile computing. The main problems we have addressed to realize our place-oriented mobile computing vision, are representing places, recognizing places, engineering place-aware applications. We describe the approaches we have developed for addressing these problems and related subproblems. A key element of our work is the use of collaborative information sharing where users’ devices share and integrate knowledge about places. Our place ontology facilitates such collaboration. Declarative privacy policies allow users to specify contextual features under which they prefer to share or not share their information.
Entity Type Recognition for Heterogeneous Semantic Graphs
Sleeman, Jennifer (University of Maryland Baltimore County.) | Finin, Tim (University of Maryland Baltimore County.) | Joshi, Anupam (University of Maryland Baltimore County.)
We describe an approach for identifying fine-grained entity types in heterogeneous data graphs that is effective for unstructured data or when the underlying ontologies or semantic schemas are unknown. Identifying fine-grained entity types, rather than a few high-level types, supports coreference resolution in heterogeneous graphs by reducing the number of possible coreference relations that must be considered. For such cases, we use supervised machine learning to map entity attributes and relations to a known set of attributes and relations from appropriate background knowledge bases to predict instance entity types. We evaluated this approach in experiments on data from DBpedia, Freebase, and Arnetminer using DBpedia as the background knowledge base.
Entity Type Recognition for Heterogeneous Semantic Graphs
Sleeman, Jennifer (University of Maryland Baltimore County.) | Finin, Tim (University of Maryland Baltimore County.) | Joshi, Anupam (University of Maryland Baltimore County.)
We describe an approach for identifying fine-grained entity types in heterogeneous data graphs that is effective for unstructured data or when the underlying ontologies or semantic schemas are unknown. Identifying fine-grained entity types, rather than a few high-level types, supports coreference resolution in heterogeneous graphs by reducing the number of possible coreference relations that must be considered. Big data problems that involve integrating data from multiple sources can benefit from our approach when the datas ontologies are unknown, inaccessible or semantically trivial. For such cases, we use supervised machine learning to map entity attributes and relations to a known set of attributes and relations from appropriate background knowledge bases to predict instance entity types. We evaluated this approach in experiments on data from DBpedia, Freebase, and Arnetminer using DBpedia as the background knowledge base.
Taming Wild Big Data
Sleeman, Jennifer (University of Maryland, Baltimore County) | Finin, Tim (University of Maryland, Baltimore County)
Wild Big Data (WBD) is data that is hard to extract, understand, and use due to its heterogeneous nature and volume. It typically comes without a schema, is obtained from multiple sources and provides a challenge for information extraction and integration. We describe a way to subduing WBD that uses techniques and resources that are popular for processing natural language text. The approach is applicable to data that is presented as a graph of objects and relations between them and to tabular data that can be transformed into such a graph. We start by applying topic models to contextualize the data and then use the results to identify the potential types of the graph's nodes by mapping them to known types found in large open ontologies such as Freebase, and DBpedia. The results allow us to assemble coarse clusters of objects that can then be used to interpret the link and perform entity disambiguation and record linking.
KELVIN: Extracting Knowledge from Large Text Collections
Mayfield, James (Johns Hopkins Applied Physics Laboratory) | McNamee, Paul (Johns Hopkins Applied Physics Laboratory) | Harman, Craig (Johns Hopkins University) | Finin, Tim (University of Maryland, Baltimore County) | Lawrie, Dawn (Loyola University Maryland)
We describe the KELVIN system for extracting entities and relations from large text collections and its use in the TAC Knowledge Base Population Cold Start task run by the U.S. National Institute of Standards and Technology. The Cold Start task starts with an empty knowledge base defined by an ontology or entity types, properties and relations. Evaluations in 2012 and 2013 were done using a collection of text from local Web and news to de-emphasize the linking entities to a background knowledge bases such as Wikipedia. Interesting features of KELVIN include a cross-document entity coreference module based on entity mentions, removal of suspect intra-document conference chains, a slot value consolidator for entities, the application of inference rules to expand the number of asserted facts and a set of analysis and browsing tools supporting development.
Comparing and Evaluating Semantic Data Automatically Extracted from Text
Lawrie, Dawn (Loyola University Maryland) | Finin, Tim (University of Maryland Baltimore County) | Mayfield, James (Johns Hopkins University) | McNamee, Paul (Johns Hopkins University)
One way to obtain large amounts of semantic data is to extract facts from the vast quantities of text that is now available on-line. The relatively low accuracy of current information extraction techniques introduces a need for evaluating the quality of the knowledge bases (KBs) they generate. We frame the problem as comparing KBs generated by different systems from the same documents and show that exploiting provenance leads to more efficient techniques for aligning them and identifying their differences. We describe two types of tools: entity-match focuses on differences in entities found and linked; kbdiff focuses on differences in relations among those entities. Together, these tools support assessment of relative KB accuracy by sampling the parts of two KBs that disagree. We explore the usefulness of the tools through the construction of tens of different KBs built from the same 26,000 Washington Post articles and identifying the differences.
Entity Type Recognition for Heterogeneous Semantic Graphs
Sleeman, Jennifer (University of Maryland, Baltimore County) | Finin, Tim (University of Maryland, Baltimore County)
We describe an approach to reducing the computational cost of identifying coreferent instances in heterogeneous semantic graphs where the underlying ontologies may not be informative or even known. The problem is similar to coreference resolution in unstructured text, where a variety of linguistic clues and contextual information is used to infer entity types and predict coreference. Semantic graphs, whether in RDF or another formalism, are semi-structured data with very different contextual clues and need different approaches to identify potentially coreferent entities. When their ontologies are unknown, inaccessible or semantically trivial, coreference resolution is difficult. For such cases, we can use supervised machine learning to map entity attributes via dictionaries based on properties from an appropriate background knowledge base to predict instance entity types, aiding coreference resolution. We evaluated the approach in experiments on data from Wikipedia, Freebase and Arnetminer and DBpedia as the background knowledge base.
David L Waltz, in Memoriam
Gabriel, Richard P. (IBM) | Finin, Tim (University of Maryland, Baltimore County) | Sun, Ron (Rensselaer Polytechnic Institute)
David L. Waltz (1943-2012), was director, Center for Computational Learning Systems In 1973, Dave Waltz with Richard P. Gabriel in tow headed Dave Waltz delivers his AAAI Presidential Address at AAAI-98 in Madison, Wisconsin. While at Illinois, Dave produced system, paving the way for an engineering-style 11 Ph.D. students and many more MS students, approach to emergent AI techniques; and even mentored junior researchers and postdocs, attracted though their first attempts to create a multidisciplinary new AI faculty, and helped create the Beckman AI degree program failed, Dave was able in Institute for Advanced Science and Technology. In 1984, Marvin Minsky asked Dave to return to During the late 1970s and early 1980s, Waltz's Thinking Machines, Inc., an MIT spinoff in Cambridge group explored new ideas in natural language processing, -- with the temptation that the atmosphere cognitive science, qualitative reasoning, would be like the early days of the AI Lab all over and parallel computation in a collaborative environment again. At the same time he took a parttime including researchers in computer science, tenured position at Brandeis. Machines and Brandeis, Dave developed the ideas He chaired and brought the influential of massively parallel AI and, with Craig Stanfill, the Theoretical Issues in Natural Language Processing memory-based reasoning approach to case-based conference to Urbana in 1978.
Reports of the AAAI 2011 Fall Symposia
Blisard, Sam (Naval Research Laboratory) | Carmichael, Ted (University of North Carolina at Charlotte) | Ding, Li (University of Maryland, Baltimore County) | Finin, Tim (University of Maryland, Baltimore County) | Frost, Wende (Naval Research Laboratory) | Graesser, Arthur (University of Memphis) | Hadzikadic, Mirsad (University of North Carolina at Charlotte) | Kagal, Lalana (Massachusetts Institute of Technology) | Kruijff, Geert-Jan M. (German Research Center for Artificial Intelligence) | Langley, Pat (Arizona State University) | Lester, James (North Carolina State University) | McGuinness, Deborah L. (Rensselaer Polytechnic Institute) | Mostow, Jack (Carnegie Mellon University) | Papadakis, Panagiotis (University of Sapienza, Rome) | Pirri, Fiora (Sapienza University of Rome) | Prasad, Rashmi (University of Wisconsin-Milwaukee) | Stoyanchev, Svetlana (Columbia University) | Varakantham, Pradeep (Singapore Management University)
The Association for the Advancement of Artificial Intelligence was pleased to present the 2011 Fall Symposium Series, held Friday through Sunday, November 4–6, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the seven symposia are as follows: (1) Advances in Cognitive Systems; (2) Building Representations of Common Ground with Intelligent Agents; (3) Complex Adaptive Systems: Energy, Information and Intelligence; (4) Multiagent Coordination under Uncertainty; (5) Open Government Knowledge: AI Opportunities and Challenges; (6) Question Generation; and (7) Robot-Human Teamwork in Dynamic Adverse Environment. The highlights of each symposium are presented in this report.
Reports of the AAAI 2011 Fall Symposia
Blisard, Sam (Naval Research Laboratory) | Carmichael, Ted (University of North Carolina at Charlotte) | Ding, Li (University of Maryland, Baltimore County) | Finin, Tim (University of Maryland, Baltimore County) | Frost, Wende (Naval Research Laboratory) | Graesser, Arthur (University of Memphis) | Hadzikadic, Mirsad (University of North Carolina at Charlotte) | Kagal, Lalana (Massachusetts Institute of Technology) | Kruijff, Geert-Jan M. (German Research Center for Artificial Intelligence) | Langley, Pat (Arizona State University) | Lester, James (North Carolina State University) | McGuinness, Deborah L. (Rensselaer Polytechnic Institute) | Mostow, Jack (Carnegie Mellon University) | Papadakis, Panagiotis (University of Sapienza, Rome) | Pirri, Fiora (Sapienza University of Rome) | Prasad, Rashmi (University of Wisconsin-Milwaukee) | Stoyanchev, Svetlana (Columbia University) | Varakantham, Pradeep (Singapore Management University)
The Association for the Advancement of Artificial Intelligence was pleased to present the 2011 Fall Symposium Series, held Friday through Sunday, November 4–6, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the seven symposia are as follows: (1) Advances in Cognitive Systems; (2) Building Representations of Common Ground with Intelligent Agents; (3) Complex Adaptive Systems: Energy, Information and Intelligence; (4) Multiagent Coordination under Uncertainty; (5) Open Government Knowledge: AI Opportunities and Challenges; (6) Question Generation; and (7) Robot-Human Teamwork in Dynamic Adverse Environment. The highlights of each symposium are presented in this report.