Not enough data to create a plot.
Try a different view from the menu above.
Figueira, Diego
Shapley Revisited: Tractable Responsibility Measures for Query Answers
Bienvenu, Meghyn, Figueira, Diego, Lafourcade, Pierre
The Shapley value, originating from cooperative game theory, has been employed to define responsibility measures that quantify the contributions of database facts to obtaining a given query answer. For non-numeric queries, this is done by considering a cooperative game whose players are the facts and whose wealth function assigns 1 or 0 to each subset of the database, depending on whether the query answer holds in the given subset. While conceptually simple, this approach suffers from a notable drawback: the problem of computing such Shapley values is #P-hard in data complexity, even for simple conjunctive queries. This motivates us to revisit the question of what constitutes a reasonable responsibility measure and to introduce a new family of responsibility measures -- weighted sums of minimal supports (WSMS) -- which satisfy intuitive properties. Interestingly, while the definition of WSMSs is simple and bears no obvious resemblance to the Shapley value formula, we prove that every WSMS measure can be equivalently seen as the Shapley value of a suitably defined cooperative game. Moreover, WSMS measures enjoy tractable data complexity for a large class of queries, including all unions of conjunctive queries. We further explore the combined complexity of WSMS computation and establish (in)tractability results for various subclasses of conjunctive queries.
PDL on Steroids: on Expressive Extensions of PDL with Intersection and Converse
Figueira, Diego, Figueira, Santiago, Pin, Edwin
We introduce CPDL+, a family of expressive logics rooted in Propositional Dynamic Logic (PDL). In terms of expressive power, CPDL+ strictly contains PDL extended with intersection and converse (a.k.a. ICPDL) as well as Conjunctive Queries (CQ), Conjunctive Regular Path Queries (CRPQ), or some known extensions thereof (Regular Queries and CQPDL). We investigate the expressive power, characterization of bisimulation, satisfiability, and model checking for CPDL+. We argue that natural subclasses of CPDL+ can be defined in terms of the tree-width of the underlying graphs of the formulas. We show that the class of CPDL+ formulas of tree-width 2 is equivalent to ICPDL, and that it also coincides with CPDL+ formulas of tree-width 1. However, beyond tree-width 2, incrementing the tree-width strictly increases the expressive power. We characterize the expressive power for every class of fixed tree-width formulas in terms of a bisimulation game with pebbles. Based on this characterization, we show that CPDL+ has a tree-like model property. We prove that the satisfiability problem is decidable in 2ExpTime on fixed tree-width formulas, coinciding with the complexity of ICPDL. We also exhibit classes for which satisfiability is reduced to ExpTime. Finally, we establish that the model checking problem for fixed tree-width formulas is in \ptime, contrary to the full class CPDL+.
Bisimulations on Data Graphs
Abriola, Sergio, Barceló, Pablo, Figueira, Diego, Figueira, Santiago
Bisimulation provides structural conditions to characterize indistinguishability from an external observer between nodes on labeled graphs. It is a fundamental notion used in many areas, such as verification, graph-structured databases, and constraint satisfaction. However, several current applications use graphs where nodes also contain data (the so called "data graphs"), and where observers can test for equality or inequality of data values (e.g., asking the attribute 'name' of a node to be different from that of all its neighbors). The present work constitutes a first investigation of "data aware" bisimulations on data graphs. We study the problem of computing such bisimulations, based on the observational indistinguishability for XPath ---a language that extends modal logics like PDL with tests for data equality--- with and without transitive closure operators. We show that in general the problem is PSpace-complete, but identify several restrictions that yield better complexity bounds (coNP, PTime) by controlling suitable parameters of the problem, namely the amount of non-locality allowed, and the class of models considered (graphs, DAGs, trees). In particular, this analysis yields a hierarchy of tractable fragments.