Plotting

 Fernandez-Amoros, David


Word Sense Disambiguation Using English-Spanish Aligned Phrases over Comparable Corpora

arXiv.org Artificial Intelligence

In this paper we describe a WSD experiment based on bilingual English-Spanish comparable corpora in which individual noun phrases have been identified and aligned with their respective counterparts in the other language. The evaluation of the experiment has been carried out against SemCor. We show that, with the alignment algorithm employed, potential precision is high (74.3%), however the coverage of the method is low (2.7%), due to alignments being far less frequent than we expected. Contrary to our intuition, precision does not rise consistently with the number of alignments. The coverage is low due to several factors; there are important domain differences, and English and Spanish are too close languages for this approach to be able to discriminate efficiently between senses, rendering it unsuitable for WSD, although the method may prove more productive in machine translation.


The Uned systems at Senseval-2

arXiv.org Artificial Intelligence

We have participated in the SENSEVAL-2 English tasks (all words and lexical sample) with an unsupervised system based on mutual information measured over a large corpus (277 million words) and some additional heuristics. A supervised extension of the system was also presented to the lexical sample task. Our system scored first among unsupervised systems in both tasks: 56.9% recall in all words, 40.2% in lexical sample. This is slightly worse than the first sense heuristic for all words and 3.6% better for the lexical sample, a strong indication that unsupervised Word Sense Disambiguation remains being a strong challenge.