Feris, Rogerio
SpotTune: Transfer Learning through Adaptive Fine-tuning
Guo, Yunhui, Shi, Honghui, Kumar, Abhishek, Grauman, Kristen, Rosing, Tajana, Feris, Rogerio
Transfer learning, which allows a source task to affect the inductive bias of the target task, is widely used in computer vision. The typical way of conducting transfer learning with deep neural networks is to fine-tune a model pre-trained on the source task using data from the target task. In this paper, we propose an adaptive fine-tuning approach, called SpotTune, which finds the optimal fine-tuning strategy per instance for the target data. In SpotTune, given an image from the target task, a policy network is used to make routing decisions on whether to pass the image through the fine-tuned layers or the pre-trained layers. We conduct extensive experiments to demonstrate the effectiveness of the proposed approach. Our method outperforms the traditional fine-tuning approach on 12 out of 14 standard datasets.We also compare SpotTune with other state-of-the-art fine-tuning strategies, showing superior performance. On the Visual Decathlon datasets, our method achieves the highest score across the board without bells and whistles.
Co-regularized Alignment for Unsupervised Domain Adaptation
Kumar, Abhishek, Sattigeri, Prasanna, Wadhawan, Kahini, Karlinsky, Leonid, Feris, Rogerio, Freeman, William T., Wornell, Gregory
Deep neural networks, trained with large amount of labeled data, can fail to generalize well when tested with examples from a \emph{target domain} whose distribution differs from the training data distribution, referred as the \emph{source domain}. It can be expensive or even infeasible to obtain required amount of labeled data in all possible domains. Unsupervised domain adaptation sets out to address this problem, aiming to learn a good predictive model for the target domain using labeled examples from the source domain but only unlabeled examples from the target domain. Domain alignment approaches this problem by matching the source and target feature distributions, and has been used as a key component in many state-of-the-art domain adaptation methods. However, matching the marginal feature distributions does not guarantee that the corresponding class conditional distributions will be aligned across the two domains. We propose co-regularized domain alignment for unsupervised domain adaptation, which constructs multiple diverse feature spaces and aligns source and target distributions in each of them individually, while encouraging that alignments agree with each other with regard to the class predictions on the unlabeled target examples. The proposed method is generic and can be used to improve any domain adaptation method which uses domain alignment. We instantiate it in the context of a recent state-of-the-art method and observe that it provides significant performance improvements on several domain adaptation benchmarks.