Well File:

 Feng Liang


Bayesian Joint Estimation of Multiple Graphical Models

Neural Information Processing Systems

In this paper, we propose a novel Bayesian group regularization method based on the spike and slab Lasso priors for jointly estimating multiple graphical models. The proposed method can be used to estimate common sparsity structure underlying the graphical models while capturing potential heterogeneity of the precision matrices corresponding to those models.


Bayesian Joint Estimation of Multiple Graphical Models

Neural Information Processing Systems

In this paper, we propose a novel Bayesian group regularization method based on the spike and slab Lasso priors for jointly estimating multiple graphical models. The proposed method can be used to estimate common sparsity structure underlying the graphical models while capturing potential heterogeneity of the precision matrices corresponding to those models.