Goto

Collaborating Authors

 Feng, Zhili


Non-PSD Matrix Sketching with Applications to Regression and Optimization

arXiv.org Machine Learning

A variety of dimensionality reduction techniques have been applied for computations involving large matrices. The underlying matrix is randomly compressed into a smaller one, while approximately retaining many of its original properties. As a result, much of the expensive computation can be performed on the small matrix. The sketching of positive semidefinite (PSD) matrices is well understood, but there are many applications where the related matrices are not PSD, including Hessian matrices in non-convex optimization and covariance matrices in regression applications involving complex numbers. In this paper, we present novel dimensionality reduction methods for non-PSD matrices, as well as their ``square-roots", which involve matrices with complex entries. We show how these techniques can be used for multiple downstream tasks. In particular, we show how to use the proposed matrix sketching techniques for both convex and non-convex optimization, $\ell_p$-regression for every $1 \leq p \leq \infty$, and vector-matrix-vector queries.


Joint Reasoning for Temporal and Causal Relations

arXiv.org Artificial Intelligence

Understanding temporal and causal relations between events is a fundamental natural language understanding task. Because a cause must be before its effect in time, temporal and causal relations are closely related and one relation even dictates the other one in many cases. However, limited attention has been paid to studying these two relations jointly. This paper presents a joint inference framework for them using constrained conditional models (CCMs). Specifically, we formulate the joint problem as an integer linear programming (ILP) problem, enforcing constraints inherently in the nature of time and causality. We show that the joint inference framework results in statistically significant improvement in the extraction of both temporal and causal relations from text.


Does Data Augmentation Lead to Positive Margin?

arXiv.org Machine Learning

Data augmentation (DA) is commonly used during model training, as it significantly improves test error and model robustness. DA artificially expands the training set by applying random noise, rotations, crops, or even adversarial perturbations to the input data. Although DA is widely used, its capacity to provably improve robustness is not fully understood. In this work, we analyze the robustness that DA begets by quantifying the margin that DA enforces on empirical risk minimizers. We first focus on linear separators, and then a class of nonlinear models whose labeling is constant within small convex hulls of data points. We present lower bounds on the number of augmented data points required for non-zero margin, and show that commonly used DA techniques may only introduce significant margin after adding exponentially many points to the data set.


Online learning with graph-structured feedback against adaptive adversaries

arXiv.org Machine Learning

We derive upper and lower bounds for the policy regret of $T$-round online learning problems with graph-structured feedback, where the adversary is nonoblivious but assumed to have a bounded memory. We obtain upper bounds of $\widetilde O(T^{2/3})$ and $\widetilde O(T^{3/4})$ for strongly-observable and weakly-observable graphs, respectively, based on analyzing a variant of the Exp3 algorithm. When the adversary is allowed a bounded memory of size 1, we show that a matching lower bound of $\widetilde\Omega(T^{2/3})$ is achieved in the case of full-information feedback. We also study the particular loss structure of an oblivious adversary with switching costs, and show that in such a setting, non-revealing strongly-observable feedback graphs achieve a lower bound of $\widetilde\Omega(T^{2/3})$, as well.