Feng, Yang
Benchmarking Robustness of AI-Enabled Multi-sensor Fusion Systems: Challenges and Opportunities
Gao, Xinyu, Wang, Zhijie, Feng, Yang, Ma, Lei, Chen, Zhenyu, Xu, Baowen
Multi-Sensor Fusion (MSF) based perception systems have been the foundation in supporting many industrial applications and domains, such as self-driving cars, robotic arms, and unmanned aerial vehicles. Over the past few years, the fast progress in data-driven artificial intelligence (AI) has brought a fast-increasing trend to empower MSF systems by deep learning techniques to further improve performance, especially on intelligent systems and their perception systems. Although quite a few AI-enabled MSF perception systems and techniques have been proposed, up to the present, limited benchmarks that focus on MSF perception are publicly available. Given that many intelligent systems such as self-driving cars are operated in safety-critical contexts where perception systems play an important role, there comes an urgent need for a more in-depth understanding of the performance and reliability of these MSF systems. To bridge this gap, we initiate an early step in this direction and construct a public benchmark of AI-enabled MSF-based perception systems including three commonly adopted tasks (i.e., object detection, object tracking, and depth completion). Based on this, to comprehensively understand MSF systems' robustness and reliability, we design 14 common and realistic corruption patterns to synthesize large-scale corrupted datasets. We further perform a systematic evaluation of these systems through our large-scale evaluation. Our results reveal the vulnerability of the current AI-enabled MSF perception systems, calling for researchers and practitioners to take robustness and reliability into account when designing AI-enabled MSF.
Fuzzy Alignments in Directed Acyclic Graph for Non-Autoregressive Machine Translation
Ma, Zhengrui, Shao, Chenze, Gui, Shangtong, Zhang, Min, Feng, Yang
Non-autoregressive translation (NAT) reduces the decoding latency but suffers from performance degradation due to the multi-modality problem. Recently, the structure of directed acyclic graph has achieved great success in NAT, which tackles the multi-modality problem by introducing dependency between vertices. However, training it with negative log-likelihood loss implicitly requires a strict alignment between reference tokens and vertices, weakening its ability to handle multiple translation modalities. In this paper, we hold the view that all paths in the graph are fuzzily aligned with the reference sentence. We do not require the exact alignment but train the model to maximize a fuzzy alignment score between the graph and reference, which takes captured translations in all modalities into account. Extensive experiments on major WMT benchmarks show that our method substantially improves translation performance and increases prediction confidence, setting a new state of the art for NAT on the raw training data.
Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness
Tian, Ye, Gu, Yuqi, Feng, Yang
Representation multi-task learning (MTL) and transfer learning (TL) have achieved tremendous success in practice. However, the theoretical understanding of these methods is still lacking. Most existing theoretical works focus on cases where all tasks share the same representation, and claim that MTL and TL almost always improve performance. However, as the number of tasks grows, assuming all tasks share the same representation is unrealistic. Also, this does not always match empirical findings, which suggest that a shared representation may not necessarily improve single-task or target-only learning performance. In this paper, we aim to understand how to learn from tasks with \textit{similar but not exactly the same} linear representations, while dealing with outlier tasks. With a known intrinsic dimension, we propose two algorithms that are \textit{adaptive} to the similarity structure and \textit{robust} to outlier tasks under both MTL and TL settings. Our algorithms outperform single-task or target-only learning when representations across tasks are sufficiently similar and the fraction of outlier tasks is small. Furthermore, they always perform no worse than single-task learning or target-only learning, even when the representations are dissimilar. We provide information-theoretic lower bounds to show that our algorithms are nearly \textit{minimax} optimal in a large regime. We also propose an algorithm to adapt to the unknown intrinsic dimension. We conduct two simulation studies to verify our theoretical results.
DDAC-SpAM: A Distributed Algorithm for Fitting High-dimensional Sparse Additive Models with Feature Division and Decorrelation
He, Yifan, Wu, Ruiyang, Zhou, Yong, Feng, Yang
Distributed statistical learning has become a popular technique for large-scale data analysis. Most existing work in this area focuses on dividing the observations, but we propose a new algorithm, DDAC-SpAM, which divides the features under a high-dimensional sparse additive model. Our approach involves three steps: divide, decorrelate, and conquer. The decorrelation operation enables each local estimator to recover the sparsity pattern for each additive component without imposing strict constraints on the correlation structure among variables. The effectiveness and efficiency of the proposed algorithm are demonstrated through theoretical analysis and empirical results on both synthetic and real data. The theoretical results include both the consistent sparsity pattern recovery as well as statistical inference for each additive functional component. Our approach provides a practical solution for fitting sparse additive models, with promising applications in a wide range of domains.
A ChatGPT Aided Explainable Framework for Zero-Shot Medical Image Diagnosis
Liu, Jiaxiang, Hu, Tianxiang, Zhang, Yan, Gai, Xiaotang, Feng, Yang, Liu, Zuozhu
Zero-shot medical image classification is a critical process in real-world scenarios where we have limited access to all possible diseases or large-scale annotated data. It involves computing similarity scores between a query medical image and possible disease categories to determine the diagnostic result. Recent advances in pretrained vision-language models (VLMs) such as CLIP have shown great performance for zero-shot natural image recognition and exhibit benefits in medical applications. However, an explainable zero-shot medical image recognition framework with promising performance is yet under development. In this paper, we propose a novel CLIP-based zero-shot medical image classification framework supplemented with ChatGPT for explainable diagnosis, mimicking the diagnostic process performed by human experts. The key idea is to query large language models (LLMs) with category names to automatically generate additional cues and knowledge, such as disease symptoms or descriptions other than a single category name, to help provide more accurate and explainable diagnosis in CLIP. We further design specific prompts to enhance the quality of generated texts by ChatGPT that describe visual medical features. Extensive results on one private dataset and four public datasets along with detailed analysis demonstrate the effectiveness and explainability of our training-free zero-shot diagnosis pipeline, corroborating the great potential of VLMs and LLMs for medical applications.
BayLing: Bridging Cross-lingual Alignment and Instruction Following through Interactive Translation for Large Language Models
Zhang, Shaolei, Fang, Qingkai, Zhang, Zhuocheng, Ma, Zhengrui, Zhou, Yan, Huang, Langlin, Bu, Mengyu, Gui, Shangtong, Chen, Yunji, Chen, Xilin, Feng, Yang
Large language models (LLMs) have demonstrated remarkable prowess in language understanding and generation. Advancing from foundation LLMs to instructionfollowing LLMs, instruction tuning plays a vital role in aligning LLMs to human preferences. However, the existing LLMs are usually focused on English, leading to inferior performance in non-English languages. In order to improve the performance for non-English languages, it is necessary to collect language-specific training data for foundation LLMs and construct language-specific instructions for instruction tuning, both of which are heavy loads. To minimize human workload, we propose to transfer the capabilities of language generation and instruction following from English to other languages through an interactive translation task. We have developed BayLing, an instruction-following LLM by utilizing LLaMA as the foundation LLM and automatically constructing interactive translation instructions for instructing tuning. Extensive assessments demonstrate that BayLing achieves comparable performance to GPT-3.5-turbo, despite utilizing a considerably smaller parameter size of only 13 billion. Experimental results on translation tasks show that BayLing achieves 95% of single-turn translation capability compared to GPT-4 with automatic evaluation and 96% of interactive translation capability compared to GPT-3.5-turbo with human evaluation. To estimate the performance on general tasks, we created a multi-turn instruction test set called BayLing-80. The experimental results on BayLing-80 indicate that BayLing achieves 89% of performance compared to GPT-3.5-turbo. BayLing also demonstrates outstanding performance on knowledge assessment of Chinese GaoKao and English SAT, second only to GPT-3.5-turbo among a multitude of instruction-following LLMs. Demo, homepage, code and models of BayLing are available.
End-to-End Simultaneous Speech Translation with Differentiable Segmentation
Zhang, Shaolei, Feng, Yang
End-to-end simultaneous speech translation (SimulST) outputs translation while receiving the streaming speech inputs (a.k.a. streaming speech translation), and hence needs to segment the speech inputs and then translate based on the current received speech. However, segmenting the speech inputs at unfavorable moments can disrupt the acoustic integrity and adversely affect the performance of the translation model. Therefore, learning to segment the speech inputs at those moments that are beneficial for the translation model to produce high-quality translation is the key to SimulST. Existing SimulST methods, either using the fixed-length segmentation or external segmentation model, always separate segmentation from the underlying translation model, where the gap results in segmentation outcomes that are not necessarily beneficial for the translation process. In this paper, we propose Differentiable Segmentation (DiSeg) for SimulST to directly learn segmentation from the underlying translation model. DiSeg turns hard segmentation into differentiable through the proposed expectation training, enabling it to be jointly trained with the translation model and thereby learn translation-beneficial segmentation. Experimental results demonstrate that DiSeg achieves state-of-the-art performance and exhibits superior segmentation capability.
Learning Optimal Policy for Simultaneous Machine Translation via Binary Search
Guo, Shoutao, Zhang, Shaolei, Feng, Yang
Simultaneous machine translation (SiMT) starts to output translation while reading the source sentence and needs a precise policy to decide when to output the generated translation. Therefore, the policy determines the number of source tokens read during the translation of each target token. However, it is difficult to learn a precise translation policy to achieve good latency-quality trade-offs, because there is no golden policy corresponding to parallel sentences as explicit supervision. In this paper, we present a new method for constructing the optimal policy online via binary search. By employing explicit supervision, our approach enables the SiMT model to learn the optimal policy, which can guide the model in completing the translation during inference. Experiments on four translation tasks show that our method can exceed strong baselines across all latency scenarios.
CMOT: Cross-modal Mixup via Optimal Transport for Speech Translation
Zhou, Yan, Fang, Qingkai, Feng, Yang
End-to-end speech translation (ST) is the task of translating speech signals in the source language into text in the target language. As a cross-modal task, end-to-end ST is difficult to train with limited data. Existing methods often try to transfer knowledge from machine translation (MT), but their performances are restricted by the modality gap between speech and text. In this paper, we propose Cross-modal Mixup via Optimal Transport CMOT to overcome the modality gap. We find the alignment between speech and text sequences via optimal transport and then mix up the sequences from different modalities at a token level using the alignment. Experiments on the MuST-C ST benchmark demonstrate that CMOT achieves an average BLEU of 30.0 in 8 translation directions, outperforming previous methods. Further analysis shows CMOT can adaptively find the alignment between modalities, which helps alleviate the modality gap between speech and text. Code is publicly available at https://github.com/ictnlp/CMOT.
Understanding and Bridging the Modality Gap for Speech Translation
Fang, Qingkai, Feng, Yang
How to achieve better end-to-end speech translation (ST) by leveraging (text) machine translation (MT) data? Among various existing techniques, multi-task learning is one of the effective ways to share knowledge between ST and MT in which additional MT data can help to learn source-to-target mapping. However, due to the differences between speech and text, there is always a gap between ST and MT. In this paper, we first aim to understand this modality gap from the target-side representation differences, and link the modality gap to another well-known problem in neural machine translation: exposure bias. We find that the modality gap is relatively small during training except for some difficult cases, but keeps increasing during inference due to the cascading effect. To address these problems, we propose the Cross-modal Regularization with Scheduled Sampling (Cress) method. Specifically, we regularize the output predictions of ST and MT, whose target-side contexts are derived by sampling between ground truth words and self-generated words with a varying probability. Furthermore, we introduce token-level adaptive training which assigns different training weights to target tokens to handle difficult cases with large modality gaps. Experiments and analysis show that our approach effectively bridges the modality gap, and achieves promising results in all eight directions of the MuST-C dataset.