Plotting

 Feng, Xiaocheng


The Factual Inconsistency Problem in Abstractive Text Summarization: A Survey

arXiv.org Artificial Intelligence

Recently, various neural encoder-decoder models pioneered by Seq2Seq framework have been proposed to achieve the goal of generating more abstractive summaries by learning to map input text to output text. At a high level, such neural models can freely generate summaries without any constraint on the words or phrases used. Moreover, their format is closer to human-edited summaries and output is more readable and fluent. However, the neural model's abstraction ability is a double-edged sword. A commonly observed problem with the generated summaries is the distortion or fabrication of factual information in the article. This inconsistency between the original text and the summary has caused various concerns over its applicability, and the previous evaluation methods of text summarization are not suitable for this issue. In response to the above problems, the current research direction is predominantly divided into two categories, one is to design fact-aware evaluation metrics to select outputs without factual inconsistency errors, and the other is to develop new summarization systems towards factual consistency. In this survey, we focus on presenting a comprehensive review of these fact-specific evaluation methods and text summarization models.


Semantic-aware Contrastive Learning for Electroencephalography-to-Text Generation with Curriculum Learning

arXiv.org Artificial Intelligence

Electroencephalography-to-Text generation (EEG-to-Text), which aims to directly generate natural text from EEG signals has drawn increasing attention in recent years due to the enormous potential for Brain-computer interfaces (BCIs). However, the remarkable discrepancy between the subject-dependent EEG representation and the semantic-dependent text representation poses a great challenge to this task. To mitigate this challenge, we devise a Curriculum Semantic-aware Contrastive Learning strategy (C-SCL), which effectively re-calibrates the subject-dependent EEG representation to the semantic-dependent EEG representation, thus reducing the discrepancy. Specifically, our C-SCL pulls semantically similar EEG representations together while pushing apart dissimilar ones. Besides, in order to introduce more meaningful contrastive pairs, we carefully employ curriculum learning to not only craft meaningful contrastive pairs but also make the learning progressively. We conduct extensive experiments on the ZuCo benchmark and our method combined with diverse models and architectures shows stable improvements across three types of metrics while achieving the new state-of-the-art. Further investigation proves not only its superiority in both the single-subject and low-resource settings but also its robust generalizability in the zero-shot setting.


A Distributional Lens for Multi-Aspect Controllable Text Generation

arXiv.org Artificial Intelligence

Multi-aspect controllable text generation is a more challenging and practical task than single-aspect control. Existing methods achieve complex multi-aspect control by fusing multiple controllers learned from single-aspect, but suffer from attribute degeneration caused by the mutual interference of these controllers. To address this, we provide observations on attribute fusion from a distributional perspective and propose to directly search for the intersection areas of multiple attribute distributions as their combination for generation. Our method first estimates the attribute space with an autoencoder structure. Afterward, we iteratively approach the intersections by jointly minimizing distances to points representing different attributes. Finally, we map them to attribute-relevant sentences with a prefix-tuning-based decoder. Experiments on the three-aspect control task, including sentiment, topic, and detoxification aspects, reveal that our method outperforms several strong baselines on attribute relevance and text quality and achieves the SOTA. Further analysis also supplies some explanatory support for the effectiveness of our approach.