Goto

Collaborating Authors

 Feng, Shangbin


DELL: Generating Reactions and Explanations for LLM-Based Misinformation Detection

arXiv.org Artificial Intelligence

Large language models are limited by challenges in factuality and hallucinations to be directly employed off-the-shelf for judging the veracity of news articles, where factual accuracy is paramount. In this work, we propose DELL that identifies three key stages in misinformation detection where LLMs could be incorporated as part of the pipeline: 1) LLMs could \emph{generate news reactions} to represent diverse perspectives and simulate user-news interaction networks; 2) LLMs could \emph{generate explanations} for proxy tasks (e.g., sentiment, stance) to enrich the contexts of news articles and produce experts specializing in various aspects of news understanding; 3) LLMs could \emph{merge task-specific experts} and provide an overall prediction by incorporating the predictions and confidence scores of varying experts. Extensive experiments on seven datasets with three LLMs demonstrate that DELL outperforms state-of-the-art baselines by up to 16.8\% in macro f1-score. Further analysis reveals that the generated reactions and explanations are greatly helpful in misinformation detection, while our proposed LLM-guided expert merging helps produce better-calibrated predictions.


Chain-of-Layer: Iteratively Prompting Large Language Models for Taxonomy Induction from Limited Examples

arXiv.org Artificial Intelligence

Automatic taxonomy induction is crucial for web search, recommendation systems, and question answering. Manual curation of taxonomies is expensive in terms of human effort, making automatic taxonomy construction highly desirable. In this work, we introduce Chain-of-Layer which is an in-context learning framework designed to induct taxonomies from a given set of entities. Chain-of-Layer breaks down the task into selecting relevant candidate entities in each layer and gradually building the taxonomy from top to bottom. To minimize errors, we introduce the Ensemble-based Ranking Filter to reduce the hallucinated content generated at each iteration. Through extensive experiments, we demonstrate that Chain-of-Layer achieves state-of-the-art performance on four real-world benchmarks.


Don't Hallucinate, Abstain: Identifying LLM Knowledge Gaps via Multi-LLM Collaboration

arXiv.org Artificial Intelligence

Despite efforts to expand the knowledge of large language models (LLMs), knowledge gaps -- missing or outdated information in LLMs -- might always persist given the evolving nature of knowledge. In this work, we study approaches to identify LLM knowledge gaps and abstain from answering questions when knowledge gaps are present. We first adapt existing approaches to model calibration or adaptation through fine-tuning/prompting and analyze their ability to abstain from generating low-confidence outputs. Motivated by their failures in self-reflection and over-reliance on held-out sets, we propose two novel approaches that are based on model collaboration, i.e., LLMs probing other LLMs for knowledge gaps, either cooperatively or competitively. Extensive experiments with three LLMs on four QA tasks featuring diverse knowledge domains demonstrate that both cooperative and competitive approaches to unveiling LLM knowledge gaps achieve up to 19.3% improvements on abstain accuracy against the strongest baseline. Further analysis reveals that our proposed mechanisms could help identify failure cases in retrieval augmentation and pinpoint knowledge gaps in multi-hop reasoning.


What Does the Bot Say? Opportunities and Risks of Large Language Models in Social Media Bot Detection

arXiv.org Artificial Intelligence

Social media bot detection has always been an arms race between advancements in machine learning bot detectors and adversarial bot strategies to evade detection. In this work, we bring the arms race to the next level by investigating the opportunities and risks of state-of-the-art large language models (LLMs) in social bot detection. To investigate the opportunities, we design novel LLM-based bot detectors by proposing a mixture-of-heterogeneous-experts framework to divide and conquer diverse user information modalities. To illuminate the risks, we explore the possibility of LLM-guided manipulation of user textual and structured information to evade detection. Extensive experiments with three LLMs on two datasets demonstrate that instruction tuning on merely 1,000 annotated examples produces specialized LLMs that outperform state-of-the-art baselines by up to 9.1% on both datasets, while LLM-guided manipulation strategies could significantly bring down the performance of existing bot detectors by up to 29.6% and harm the calibration and reliability of bot detection systems.


Can Language Models Solve Graph Problems in Natural Language?

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures, such as planning in robotics, multi-hop question answering or knowledge probing, structured commonsense reasoning, and more. While LLMs have advanced the state-of-the-art on these tasks with structure implications, whether LLMs could explicitly process textual descriptions of graphs and structures, map them to grounded conceptual spaces, and perform structured operations remains underexplored. To this end, we propose NLGraph (Natural Language Graph), a comprehensive benchmark of graph-based problem solving designed in natural language. NLGraph contains 29,370 problems, covering eight graph reasoning tasks with varying complexity from simple tasks such as connectivity and shortest path up to complex problems such as maximum flow and simulating graph neural networks. We evaluate LLMs (GPT-3/4) with various prompting approaches on the NLGraph benchmark and find that 1) language models do demonstrate preliminary graph reasoning abilities, 2) the benefit of advanced prompting and in-context learning diminishes on more complex graph problems, while 3) LLMs are also (un)surprisingly brittle in the face of spurious correlations in graph and problem settings. We then propose Build-a-Graph Prompting and Algorithmic Prompting, two instruction-based approaches to enhance LLMs in solving natural language graph problems. Build-a-Graph and Algorithmic prompting improve the performance of LLMs on NLGraph by 3.07% to 16.85% across multiple tasks and settings, while how to solve the most complicated graph reasoning tasks in our setup with language models remains an open research question.


What Constitutes a Faithful Summary? Preserving Author Perspectives in News Summarization

arXiv.org Artificial Intelligence

In this work, we take a first step towards designing summarization systems that are faithful to the author's opinions and perspectives. Focusing on a case study of preserving political perspectives in news summarization, we find that existing approaches alter the political opinions and stances of news articles in more than 50% of summaries, misrepresenting the intent and perspectives of the news authors. We thus propose P^3Sum, a diffusion model-based summarization approach controlled by political perspective classifiers. In P^3Sum, the political leaning of a generated summary is iteratively evaluated at each decoding step, and any drift from the article's original stance incurs a loss back-propagated to the embedding layers, steering the political stance of the summary at inference time. Extensive experiments on three news summarization datasets demonstrate that P^3Sum outperforms state-of-the-art summarization systems and large language models by up to 11.4% in terms of the success rate of stance preservation, with on-par performance on standard summarization utility metrics. These findings highlight the lacunae that even for state-of-the-art models it is still challenging to preserve author perspectives in news summarization, while P^3Sum presents an important first step towards evaluating and developing summarization systems that are faithful to author intent and perspectives.


Detecting Spoilers in Movie Reviews with External Movie Knowledge and User Networks

arXiv.org Artificial Intelligence

Online movie review platforms are providing crowdsourced feedback for the film industry and the general public, while spoiler reviews greatly compromise user experience. Although preliminary research efforts were made to automatically identify spoilers, they merely focus on the review content itself, while robust spoiler detection requires putting the review into the context of facts and knowledge regarding movies, user behavior on film review platforms, and more. In light of these challenges, we first curate a large-scale network-based spoiler detection dataset LCS and a comprehensive and up-to-date movie knowledge base UKM. We then propose MVSD, a novel Multi-View Spoiler Detection framework that takes into account the external knowledge about movies and user activities on movie review platforms. Specifically, MVSD constructs three interconnecting heterogeneous information networks to model diverse data sources and their multi-view attributes, while we design and employ a novel heterogeneous graph neural network architecture for spoiler detection as node-level classification. Extensive experiments demonstrate that MVSD advances the state-of-the-art on two spoiler detection datasets, while the introduction of external knowledge and user interactions help ground robust spoiler detection. Our data and code are available at https://github.com/Arthur-Heng/Spoiler-Detection


KGQuiz: Evaluating the Generalization of Encoded Knowledge in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) demonstrate remarkable performance on knowledge-intensive tasks, suggesting that real-world knowledge is encoded in their model parameters. However, besides explorations on a few probing tasks in limited knowledge domains, it is not well understood how to evaluate LLMs' knowledge systematically and how well their knowledge abilities generalize, across a spectrum of knowledge domains and progressively complex task formats. To this end, we propose KGQuiz, a knowledge-intensive benchmark to comprehensively investigate the knowledge generalization abilities of LLMs. KGQuiz is a scalable framework constructed from triplet-based knowledge, which covers three knowledge domains and consists of five tasks with increasing complexity: true-or-false, multiple-choice QA, blank filling, factual editing, and open-ended knowledge generation. To gain a better understanding of LLMs' knowledge abilities and their generalization, we evaluate 10 open-source and black-box LLMs on the KGQuiz benchmark across the five knowledge-intensive tasks and knowledge domains. Extensive experiments demonstrate that LLMs achieve impressive performance in straightforward knowledge QA tasks, while settings and contexts requiring more complex reasoning or employing domain-specific facts still present significant challenges. We envision KGQuiz as a testbed to analyze such nuanced variations in performance across domains and task formats, and ultimately to understand, evaluate, and improve LLMs' knowledge abilities across a wide spectrum of knowledge domains and tasks.


FactKB: Generalizable Factuality Evaluation using Language Models Enhanced with Factual Knowledge

arXiv.org Artificial Intelligence

Evaluating the factual consistency of automatically generated summaries is essential for the progress and adoption of reliable summarization systems. Despite recent advances, existing factuality evaluation models are not robust, being especially prone to entity and relation errors in new domains. We propose FactKB, a simple new approach to factuality evaluation that is generalizable across domains, in particular with respect to entities and relations. FactKB is based on language models pretrained using facts extracted from external knowledge bases. We introduce three types of complementary factuality pretraining objectives based on direct entity facts, facts grounded in auxiliary knowledge about entities, and facts constructed compositionally through knowledge base walks. The resulting factuality evaluation model achieves state-of-the-art performance on two in-domain news summarization benchmarks as well as on three out-of-domain scientific literature datasets. Further analysis of FactKB shows improved ability to detect erroneous entities and relations in summaries and is robust and generalizable across domains.


Knowledge Card: Filling LLMs' Knowledge Gaps with Plug-in Specialized Language Models

arXiv.org Artificial Intelligence

By design, large language models (LLMs) are static general-purpose models, expensive to retrain or update frequently. As they are increasingly adopted for knowledge-intensive tasks, it becomes evident that these design choices lead to failures to generate factual, relevant, and up-to-date knowledge. To this end, we propose \ourmethod{}, a modular framework to plug in new factual and relevant knowledge into general-purpose LLMs. We first introduce \emph{knowledge cards} -- specialized language models trained on corpora from specific domains and sources. Knowledge cards serve as parametric repositories that are selected at inference time to generate background knowledge for the base LLM. We then propose three content selectors to dynamically select and retain information in documents generated by knowledge cards, specifically controlling for \emph{relevance}, \emph{brevity}, and \emph{factuality} of outputs. Finally, we propose two complementary integration approaches to augment the base LLM with the (relevant, factual) knowledge curated from the specialized LMs. Through extensive experiments, we demonstrate that \ourmethod{} achieves state-of-the-art performance on six benchmark datasets. Ultimately, \ourmethod{} framework enables dynamic synthesis and updates of knowledge from diverse domains. Its modularity will ensure that relevant knowledge can be continuously updated through the collective efforts of the research community.