Goto

Collaborating Authors

 Feng, Kai-Ten


Intelligent Load Balancing and Resource Allocation in O-RAN: A Multi-Agent Multi-Armed Bandit Approach

arXiv.org Artificial Intelligence

The open radio access network (O-RAN) architecture offers a cost-effective and scalable solution for internet service providers to optimize their networks using machine learning algorithms. The architecture's open interfaces enable network function virtualization, with the O-RAN serving as the primary communication device for users. However, the limited frequency resources and information explosion make it difficult to achieve an optimal network experience without effective traffic control or resource allocation. To address this, we consider mobility-aware load balancing to evenly distribute loads across the network, preventing network congestion and user outages caused by excessive load concentration on open radio unit (O-RU) governed by a single open distributed unit (O-DU). We have proposed a multi-agent multi-armed bandit for load balancing and resource allocation (mmLBRA) scheme, designed to both achieve load balancing and improve the effective sum-rate performance of the O-RAN network. We also present the mmLBRA-LB and mmLBRA-RA sub-schemes that can operate independently in non-realtime RAN intelligent controller (Non-RT RIC) and near-RT RIC, respectively, providing a solution with moderate loads and high-rate in O-RUs. Simulation results show that the proposed mmLBRA scheme significantly increases the effective network sum-rate while achieving better load balancing across O-RUs compared to rule-based and other existing heuristic methods in open literature.


A New Paradigm for Device-free Indoor Localization: Deep Learning with Error Vector Spectrum in Wi-Fi Systems

arXiv.org Artificial Intelligence

The demand for device-free indoor localization using commercial Wi-Fi devices has rapidly increased in various fields due to its convenience and versatile applications. However, random frequency offset (RFO) in wireless channels poses challenges to the accuracy of indoor localization when using fluctuating channel state information (CSI). To mitigate the RFO problem, an error vector spectrum (EVS) is conceived thanks to its higher resolution of signal and robustness to RFO. To address these challenges, this paper proposed a novel error vector assisted learning (EVAL) for device-free indoor localization. The proposed EVAL scheme employs deep neural networks to classify the location of a person in the indoor environment by extracting ample channel features from the physical layer signals. We conducted realistic experiments based on OpenWiFi project to extract both EVS and CSI to examine the performance of different device-free localization techniques. Experimental results show that our proposed EVAL scheme outperforms conventional machine learning methods and benchmarks utilizing either CSI amplitude or phase information. Compared to most existing CSI-based localization schemes, a new paradigm with higher positioning accuracy by adopting EVS is revealed by our proposed EVAL system.


Distributed Multi-Agent Deep Q-Learning for Fast Roaming in IEEE 802.11ax Wi-Fi Systems

arXiv.org Artificial Intelligence

The innovation of Wi-Fi 6, IEEE 802.11ax, was be approved as the next sixth-generation (6G) technology of wireless local area networks (WLANs) by improving the fundamental performance of latency, throughput, and so on. The main technical feature of orthogonal frequency division multiple access (OFDMA) supports multi-users to transmit respective data concurrently via the corresponding access points (APs). However, the conventional IEEE 802.11 protocol for Wi-Fi roaming selects the target AP only depending on received signal strength indication (RSSI) which is obtained by the received Response frame from the APs. In the long term, it may lead to congestion in a single channel under the scenarios of dense users further increasing the association delay and packet drop rate, even reducing the quality of service (QoS) of the overall system. In this paper, we propose a multi-agent deep Q-learning for fast roaming (MADAR) algorithm to effectively minimize the latency during the station roaming for Smart Warehouse in Wi-Fi 6 system. The MADAR algorithm considers not only RSSI but also channel state information (CSI), and through online neural network learning and weighting adjustments to maximize the reward of the action selected from Epsilon-Greedy. Compared to existing benchmark methods, the MADAR algorithm has been demonstrated for improved roaming latency by analyzing the simulation result and realistic dataset.


Hierarchical Multi-Agent Multi-Armed Bandit for Resource Allocation in Multi-LEO Satellite Constellation Networks

arXiv.org Artificial Intelligence

Low Earth orbit (LEO) satellite constellation is capable of providing global coverage area with high-rate services in the next sixth-generation (6G) non-terrestrial network (NTN). Due to limited onboard resources of operating power, beams, and channels, resilient and efficient resource management has become compellingly imperative under complex interference cases. However, different from conventional terrestrial base stations, LEO is deployed at considerable height and under high mobility, inducing substantially long delay and interference during transmission. As a result, acquiring the accurate channel state information between LEOs and ground users is challenging. Therefore, we construct a framework with a two-way transmission under unknown channel information and no data collected at long-delay ground gateway. In this paper, we propose hierarchical multi-agent multi-armed bandit resource allocation for LEO constellation (mmRAL) by appropriately assigning available radio resources. LEOs are considered as collaborative multiple macro-agents attempting unknown trials of various actions of micro-agents of respective resources, asymptotically achieving suitable allocation with only throughput information. In simulations, we evaluate mmRAL in various cases of LEO deployment, serving numbers of users and LEOs, hardware cost and outage probability. Benefited by efficient and resilient allocation, the proposed mmRAL system is capable of operating in homogeneous or heterogeneous orbital planes or constellations, achieving the highest throughput performance compared to the existing benchmarks in open literature.