Plotting

 Feng, Jianfeng


DG-SLAM: Robust Dynamic Gaussian Splatting SLAM with Hybrid Pose Optimization

arXiv.org Artificial Intelligence

Achieving robust and precise pose estimation in dynamic scenes is a significant research challenge in Visual Simultaneous Localization and Mapping (SLAM). Recent advancements integrating Gaussian Splatting into SLAM systems have proven effective in creating high-quality renderings using explicit 3D Gaussian models, significantly improving environmental reconstruction fidelity. However, these approaches depend on a static environment assumption and face challenges in dynamic environments due to inconsistent observations of geometry and photometry. To address this problem, we propose DG-SLAM, the first robust dynamic visual SLAM system grounded in 3D Gaussians, which provides precise camera pose estimation alongside high-fidelity reconstructions. Specifically, we propose effective strategies, including motion mask generation, adaptive Gaussian point management, and a hybrid camera tracking algorithm to improve the accuracy and robustness of pose estimation. Extensive experiments demonstrate that DG-SLAM delivers state-of-the-art performance in camera pose estimation, map reconstruction, and novel-view synthesis in dynamic scenes, outperforming existing methods meanwhile preserving real-time rendering ability.


NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation

arXiv.org Artificial Intelligence

Recent fMRI-to-image approaches mainly focused on associating fMRI signals with specific conditions of pre-trained diffusion models. These approaches, while producing high-quality images, capture only a limited aspect of the complex information in fMRI signals and offer little detailed control over image creation. In contrast, this paper proposes to directly modulate the generation process of diffusion models using fMRI signals. Our approach, NeuroPictor, divides the fMRI-to-image process into three steps: i) fMRI calibrated-encoding, to tackle multi-individual pre-training for a shared latent space to minimize individual difference and enable the subsequent cross-subject training; ii) fMRI-to-image cross-subject pre-training, perceptually learning to guide diffusion model with high- and low-level conditions across different individuals; iii) fMRI-to-image single-subject refining, similar with step ii but focus on adapting to particular individual. NeuroPictor extracts high-level semantic features from fMRI signals that characterizing the visual stimulus and incrementally fine-tunes the diffusion model with a low-level manipulation network to provide precise structural instructions. By training with over 60,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity, particularly in the within-subject setting, as evidenced in benchmark datasets. Project page: https://jingyanghuo.github.io/neuropictor/.


Decoding Continuous Character-based Language from Non-invasive Brain Recordings

arXiv.org Artificial Intelligence

Over the past decade, advancements in brain-computer interfaces have demonstrated the feasibility of decoding various forms of communication, such as speech sounds [80, 81], hand gestures [79, 82], articulatory movements [77, 78], and other signals [76] from intracranial recordings. Despite their efficacy, the requirement for invasive brain surgery limits the applicability of these decoding methods to patients with severe impediments in speech or communication due to neurodegenerative diseases, strokes, or traumatic brain injuries. In contrast, non-invasive recordings, particularly those employing functional magnetic resonance imaging (fMRI) [72, 74], magnetoencephalography (MEG) and electroencephalography (EEG) [73], have demonstrated the ability to record rich linguistic information, and decoding natural language from such non-invasive recordings holds the potential for broader applications in both restorative interventions and augmentative technologies. Previous efforts to decode natural language from non-invasive recordings have primarily focused on recognizing letters, words, or fragments within a predetermined set of possibilities [66-69, 72, 73]. A recent breakthrough has demonstrated the feasibility of decoding continuous language from non-invasive recordings of native English speakers [65].


OpenOcc: Open Vocabulary 3D Scene Reconstruction via Occupancy Representation

arXiv.org Artificial Intelligence

3D reconstruction has been widely used in autonomous navigation fields of mobile robotics. However, the former research can only provide the basic geometry structure without the capability of open-world scene understanding, limiting advanced tasks like human interaction and visual navigation. Moreover, traditional 3D scene understanding approaches rely on expensive labeled 3D datasets to train a model for a single task with supervision. Thus, geometric reconstruction with zero-shot scene understanding i.e. Open vocabulary 3D Understanding and Reconstruction, is crucial for the future development of mobile robots. In this paper, we propose OpenOcc, a novel framework unifying the 3D scene reconstruction and open vocabulary understanding with neural radiance fields. We model the geometric structure of the scene with occupancy representation and distill the pre-trained open vocabulary model into a 3D language field via volume rendering for zero-shot inference. Furthermore, a novel semantic-aware confidence propagation (SCP) method has been proposed to relieve the issue of language field representation degeneracy caused by inconsistent measurements in distilled features. Experimental results show that our approach achieves competitive performance in 3D scene understanding tasks, especially for small and long-tail objects.


Efficient Combinatorial Optimization via Heat Diffusion

arXiv.org Machine Learning

Combinatorial optimization problems are widespread but inherently challenging due to their discrete nature.The primary limitation of existing methods is that they can only access a small fraction of the solution space at each iteration, resulting in limited efficiency for searching the global optimal. To overcome this challenge, diverging from conventional efforts of expanding the solver's search scope, we focus on enabling information to actively propagate to the solver through heat diffusion. By transforming the target function while preserving its optima, heat diffusion facilitates information flow from distant regions to the solver, providing more efficient navigation. Utilizing heat diffusion, we propose a framework for solving general combinatorial optimization problems. The proposed methodology demonstrates superior performance across a range of the most challenging and widely encountered combinatorial optimizations. Echoing recent advancements in harnessing thermodynamics for generative artificial intelligence, our study further reveals its significant potential in advancing combinatorial optimization.


Softmax-free Linear Transformers

arXiv.org Artificial Intelligence

Vision transformers (ViTs) have pushed the state-of-the-art for visual perception tasks. The self-attention mechanism underpinning the strength of ViTs has a quadratic complexity in both computation and memory usage. This motivates the development of approximating the self-attention at linear complexity. However, an in-depth analysis in this work reveals that existing methods are either theoretically flawed or empirically ineffective for visual recognition. We identify that their limitations are rooted in the inheritance of softmax-based self-attention during approximations, that is, normalizing the scaled dot-product between token feature vectors using the softmax function. As preserving the softmax operation challenges any subsequent linearization efforts. By this insight, a family of Softmax-Free Transformers (SOFT) are proposed. Specifically, a Gaussian kernel function is adopted to replace the dot-product similarity, enabling a full self-attention matrix to be approximated under low-rank matrix decomposition. For computational robustness, we estimate the Moore-Penrose inverse using an iterative Newton-Raphson method in the forward process only, while calculating its theoretical gradients only once in the backward process. To further expand applicability (e.g., dense prediction tasks), an efficient symmetric normalization technique is introduced. Extensive experiments on ImageNet, COCO, and ADE20K show that our SOFT significantly improves the computational efficiency of existing ViT variants. With linear complexity, much longer token sequences are permitted by SOFT, resulting in superior trade-off between accuracy and complexity. Code and models are available at https://github.com/fudan-zvg/SOFT.


Probabilistic Computation with Emerging Covariance: Towards Efficient Uncertainty Quantification

arXiv.org Artificial Intelligence

Building robust, interpretable, and secure artificial intelligence system requires some degree of quantifying and representing uncertainty via a probabilistic perspective, as it allows to mimic human cognitive abilities. However, probabilistic computation presents significant challenges due to its inherent complexity. In this paper, we develop an efficient and interpretable probabilistic computation framework by truncating the probabilistic representation up to its first two moments, i.e., mean and covariance. We instantiate the framework by training a deterministic surrogate of a stochastic network that learns the complex probabilistic representation via combinations of simple activations, encapsulating the non-linearities coupling of the mean and covariance. We show that when the mean is supervised for optimizing the task objective, the unsupervised covariance spontaneously emerging from the non-linear coupling with the mean faithfully captures the uncertainty associated with model predictions. Our research highlights the inherent computability and simplicity of probabilistic computation, enabling its wider application in large-scale settings.


Dual Skipping Networks

arXiv.org Artificial Intelligence

Inspired by the recent neuroscience studies on the left-right asymmetry of the human brain in processing low and high spatial frequency information, this paper introduces a dual skipping network which carries out coarse-to-fine object categorization. Such a network has two branches to simultaneously deal with both coarse and fine-grained classification tasks. Specifically, we propose a layer-skipping mechanism that learns a gating network to predict which layers to skip in the testing stage. This layer-skipping mechanism endows the network with good flexibility and capability in practice. Evaluations are conducted on several widely used coarse-to-fine object categorization benchmarks, and promising results are achieved by our proposed network model.