Goto

Collaborating Authors

 Feng, Fuli


On the Theories Behind Hard Negative Sampling for Recommendation

arXiv.org Artificial Intelligence

Negative sampling has been heavily used to train recommender models on large-scale data, wherein sampling hard examples usually not only accelerates the convergence but also improves the model accuracy. Nevertheless, the reasons for the effectiveness of Hard Negative Sampling (HNS) have not been revealed yet. In this work, we fill the research gap by conducting thorough theoretical analyses on HNS. Firstly, we prove that employing HNS on the Bayesian Personalized Ranking (BPR) learner is equivalent to optimizing One-way Partial AUC (OPAUC). Concretely, the BPR equipped with Dynamic Negative Sampling (DNS) is an exact estimator, while with softmax-based sampling is a soft estimator. Secondly, we prove that OPAUC has a stronger connection with Top-K evaluation metrics than AUC and verify it with simulation experiments. These analyses establish the theoretical foundation of HNS in optimizing Top-K recommendation performance for the first time. On these bases, we offer two insightful guidelines for effective usage of HNS: 1) the sampling hardness should be controllable, e.g., via pre-defined hyper-parameters, to adapt to different Top-K metrics and datasets; 2) the smaller the $K$ we emphasize in Top-K evaluation metrics, the harder the negative samples we should draw. Extensive experiments on three real-world benchmarks verify the two guidelines.


Copy Motion From One to Another: Fake Motion Video Generation

arXiv.org Artificial Intelligence

One compelling application of artificial intelligence is to generate a video of a target person performing arbitrary desired motion (from a source person). While the state-of-the-art methods are able to synthesize a video demonstrating similar broad stroke motion details, they are generally lacking in texture details. A pertinent manifestation appears as distorted face, feet, and hands, and such flaws are very sensitively perceived by human observers. Furthermore, current methods typically employ GANs with a L2 loss to assess the authenticity of the generated videos, inherently requiring a large amount of training samples to learn the texture details for adequate video generation. In this work, we tackle these challenges from three aspects: 1) We disentangle each video frame into foreground (the person) and background, focusing on generating the foreground to reduce the underlying dimension of the network output. 2) We propose a theoretically motivated Gromov-Wasserstein loss that facilitates learning the mapping from a pose to a foreground image. 3) To enhance texture details, we encode facial features with geometric guidance and employ local GANs to refine the face, feet, and hands. Extensive experiments show that our method is able to generate realistic target person videos, faithfully copying complex motions from a source person.


Unbiased Knowledge Distillation for Recommendation

arXiv.org Artificial Intelligence

As a promising solution for model compression, knowledge distillation (KD) has been applied in recommender systems (RS) to reduce inference latency. Traditional solutions first train a full teacher model from the training data, and then transfer its knowledge (\ie \textit{soft labels}) to supervise the learning of a compact student model. However, we find such a standard distillation paradigm would incur serious bias issue -- popular items are more heavily recommended after the distillation. This effect prevents the student model from making accurate and fair recommendations, decreasing the effectiveness of RS. In this work, we identify the origin of the bias in KD -- it roots in the biased soft labels from the teacher, and is further propagated and intensified during the distillation. To rectify this, we propose a new KD method with a stratified distillation strategy. It first partitions items into multiple groups according to their popularity, and then extracts the ranking knowledge within each group to supervise the learning of the student. Our method is simple and teacher-agnostic -- it works on distillation stage without affecting the training of the teacher model. We conduct extensive theoretical and empirical studies to validate the effectiveness of our proposal. We release our code at: https://github.com/chengang95/UnKD.


Explainable Sparse Knowledge Graph Completion via High-order Graph Reasoning Network

arXiv.org Artificial Intelligence

Knowledge Graphs (KGs) are becoming increasingly essential infrastructures in many applications while suffering from incompleteness issues. The KG completion task (KGC) automatically predicts missing facts based on an incomplete KG. However, existing methods perform unsatisfactorily in real-world scenarios. On the one hand, their performance will dramatically degrade along with the increasing sparsity of KGs. On the other hand, the inference procedure for prediction is an untrustworthy black box. This paper proposes a novel explainable model for sparse KGC, compositing high-order reasoning into a graph convolutional network, namely HoGRN. It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability while maintaining the model's effectiveness and efficiency. There are two main components that are seamlessly integrated for joint optimization. First, the high-order reasoning component learns high-quality relation representations by capturing endogenous correlation among relations. This can reflect logical rules to justify a broader of missing facts. Second, the entity updating component leverages a weight-free Graph Convolutional Network (GCN) to efficiently model KG structures with interpretability. Unlike conventional methods, we conduct entity aggregation and design composition-based attention in the relational space without additional parameters. The lightweight design makes HoGRN better suitable for sparse settings. For evaluation, we have conducted extensive experiments-the results of HoGRN on several sparse KGs present impressive improvements (9% MRR gain on average). Further ablation and case studies demonstrate the effectiveness of the main components. Our codes will be released upon acceptance.


Graph Neural Network with Curriculum Learning for Imbalanced Node Classification

arXiv.org Artificial Intelligence

Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification. In this work, we reveal the vulnerability of GNN to the imbalance of node labels. Traditional solutions for imbalanced classification (e.g. resampling) are ineffective in node classification without considering the graph structure. Worse still, they may even bring overfitting or underfitting results due to lack of sufficient prior knowledge. To solve these problems, we propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules. For one thing, we hope to acquire certain reliable interpolation nodes and edges through the novel graph-based oversampling based on smoothness and homophily. For another, we combine graph classification loss and metric learning loss which adjust the distance between different nodes associated with minority class in feature space. Inspired by curriculum learning, we dynamically adjust the weights of different modules during training process to achieve better ability of generalization and discrimination. The proposed framework is evaluated via several widely used graph datasets, showing that our proposed model consistently outperforms the existing state-of-the-art methods.


Learning Robust Recommender from Noisy Implicit Feedback

arXiv.org Artificial Intelligence

The ubiquity of implicit feedback makes it indispensable for building recommender systems. However, it does not actually reflect the actual satisfaction of users. For example, in E-commerce, a large portion of clicks do not translate to purchases, and many purchases end up with negative reviews. As such, it is of importance to account for the inevitable noises in implicit feedback. However, little work on recommendation has taken the noisy nature of implicit feedback into consideration. In this work, we explore the central theme of denoising implicit feedback for recommender learning, including training and inference. By observing the process of normal recommender training, we find that noisy feedback typically has large loss values in the early stages. Inspired by this observation, we propose a new training strategy named Adaptive Denoising Training (ADT), which adaptively prunes the noisy interactions by two paradigms (i.e., Truncated Loss and Reweighted Loss). Furthermore, we consider extra feedback (e.g., rating) as auxiliary signal and propose three strategies to incorporate extra feedback into ADT: finetuning, warm-up training, and colliding inference. We instantiate the two paradigms on the widely used binary cross-entropy loss and test them on three representative recommender models. Extensive experiments on three benchmarks demonstrate that ADT significantly improves the quality of recommendation over normal training without using extra feedback. Besides, the proposed three strategies for using extra feedback largely enhance the denoising ability of ADT.


Causal Incremental Graph Convolution for Recommender System Retraining

arXiv.org Artificial Intelligence

Real-world recommender system needs to be regularly retrained to keep with the new data. In this work, we consider how to efficiently retrain graph convolution network (GCN) based recommender models, which are state-of-the-art techniques for collaborative recommendation. To pursue high efficiency, we set the target as using only new data for model updating, meanwhile not sacrificing the recommendation accuracy compared with full model retraining. This is non-trivial to achieve, since the interaction data participates in both the graph structure for model construction and the loss function for model learning, whereas the old graph structure is not allowed to use in model updating. Towards the goal, we propose a \textit{Causal Incremental Graph Convolution} approach, which consists of two new operators named \textit{Incremental Graph Convolution} (IGC) and \textit{Colliding Effect Distillation} (CED) to estimate the output of full graph convolution. In particular, we devise simple and effective modules for IGC to ingeniously combine the old representations and the incremental graph and effectively fuse the long-term and short-term preference signals. CED aims to avoid the out-of-date issue of inactive nodes that are not in the incremental graph, which connects the new data with inactive nodes through causal inference. In particular, CED estimates the causal effect of new data on the representation of inactive nodes through the control of their collider. Extensive experiments on three real-world datasets demonstrate both accuracy gains and significant speed-ups over the existing retraining mechanism.


Empowering Language Understanding with Counterfactual Reasoning

arXiv.org Artificial Intelligence

Present language understanding methods have demonstrated extraordinary ability of recognizing patterns in texts via machine learning. However, existing methods indiscriminately use the recognized patterns in the testing phase that is inherently different from us humans who have counterfactual thinking, e.g., to scrutinize for the hard testing samples. Inspired by this, we propose a Counterfactual Reasoning Model, which mimics the counterfactual thinking by learning from few counterfactual samples. In particular, we devise a generation module to generate representative counterfactual samples for each factual sample, and a retrospective module to retrospect the model prediction by comparing the counterfactual and factual samples. Extensive experiments on sentiment analysis (SA) and natural language inference (NLI) validate the effectiveness of our method.


TAT-QA: A Question Answering Benchmark on a Hybrid of Tabular and Textual Content in Finance

arXiv.org Artificial Intelligence

Hybrid data combining both tabular and textual content (e.g., financial reports) are quite pervasive in the real world. However, Question Answering (QA) over such hybrid data is largely neglected in existing research. In this work, we extract samples from real financial reports to build a new large-scale QA dataset containing both Tabular And Textual data, named TAT-QA, where numerical reasoning is usually required to infer the answer, such as addition, subtraction, multiplication, division, counting, comparison/sorting, and the compositions. We further propose a novel QA model termed TAGOP, which is capable of reasoning over both tables and text. It adopts sequence tagging to extract relevant cells from the table along with relevant spans from the text to infer their semantics, and then applies symbolic reasoning over them with a set of aggregation operators to arrive at the final answer. TAGOPachieves 58.0% inF1, which is an 11.1% absolute increase over the previous best baseline model, according to our experiments on TAT-QA. But this result still lags far behind performance of expert human, i.e.90.8% in F1. It is demonstrated that our TAT-QA is very challenging and can serve as a benchmark for training and testing powerful QA models that address hybrid form data.


Probabilistic and Variational Recommendation Denoising

arXiv.org Artificial Intelligence

Learning from implicit feedback is one of the most common cases in the application of recommender systems. Generally speaking, interacted examples are considered as positive while negative examples are sampled from uninteracted ones. However, noisy examples are prevalent in real-world implicit feedback. A noisy positive example could be interacted but it actually leads to negative user preference. A noisy negative example which is uninteracted because of unawareness of the user could also denote potential positive user preference. Conventional training methods overlook these noisy examples, leading to sub-optimal recommendation. In this work, we propose probabilistic and variational recommendation denoising for implicit feedback. Through an empirical study, we find that different models make relatively similar predictions on clean examples which denote the real user preference, while the predictions on noisy examples vary much more across different models. Motivated by this observation, we propose denoising with probabilistic inference (DPI) which aims to minimize the KL-divergence between the real user preference distributions parameterized by two recommendation models while maximize the likelihood of data observation. We then show that DPI recovers the evidence lower bound of an variational auto-encoder when the real user preference is considered as the latent variables. This leads to our second learning framework denoising with variational autoencoder (DVAE). We employ the proposed DPI and DVAE on four state-of-the-art recommendation models and conduct experiments on three datasets. Experimental results demonstrate that DPI and DVAE significantly improve recommendation performance compared with normal training and other denoising methods. Codes will be open-sourced.