Feng, Fuli
Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection
Li, Moxin, Wang, Wenjie, Feng, Fuli, Zhu, Fengbin, Wang, Qifan, Chua, Tat-Seng
Self-detection for Large Language Model (LLM) seeks to evaluate the LLM output trustability by leveraging LLM's own capabilities, alleviating the output hallucination issue. However, existing self-detection approaches only retrospectively evaluate answers generated by LLM, typically leading to the over-trust in incorrectly generated answers. To tackle this limitation, we propose a novel self-detection paradigm that considers the comprehensive answer space beyond LLM-generated answers. It thoroughly compares the trustability of multiple candidate answers to mitigate the over-trust in LLM-generated incorrect answers. Building upon this paradigm, we introduce a two-step framework, which firstly instructs LLM to reflect and provide justifications for each candidate answer, and then aggregates the justifications for comprehensive target answer evaluation. This framework can be seamlessly integrated with existing approaches for superior self-detection. Extensive experiments on six datasets spanning three tasks demonstrate the effectiveness of the proposed framework.
Evaluating Mathematical Reasoning of Large Language Models: A Focus on Error Identification and Correction
Li, Xiaoyuan, Wang, Wenjie, Li, Moxin, Guo, Junrong, Zhang, Yang, Feng, Fuli
The rapid advancement of Large Language Models (LLMs) in the realm of mathematical reasoning necessitates comprehensive evaluations to gauge progress and inspire future directions. Existing assessments predominantly focus on problem-solving from the examinee perspective, overlooking a dual perspective of examiner regarding error identification and correction. From the examiner perspective, we define four evaluation tasks for error identification and correction along with a new dataset with annotated error types and steps. We also design diverse prompts to thoroughly evaluate eleven representative LLMs. Our principal findings indicate that GPT-4 outperforms all models, while open-source model LLaMA-2-7B demonstrates comparable abilities to closed-source models GPT-3.5 and Gemini Pro. Notably, calculation error proves the most challenging error type. Moreover, prompting LLMs with the error types can improve the average correction accuracy by 47.9\%. These results reveal potential directions for developing the mathematical reasoning abilities of LLMs. Our code and dataset is available on https://github.com/LittleCirc1e/EIC.
Fair Recommendations with Limited Sensitive Attributes: A Distributionally Robust Optimization Approach
Shi, Tianhao, Zhang, Yang, Zhang, Jizhi, Feng, Fuli, He, Xiangnan
As recommender systems are indispensable in various domains such as job searching and e-commerce, providing equitable recommendations to users with different sensitive attributes becomes an imperative requirement. Prior approaches for enhancing fairness in recommender systems presume the availability of all sensitive attributes, which can be difficult to obtain due to privacy concerns or inadequate means of capturing these attributes. In practice, the efficacy of these approaches is limited, pushing us to investigate ways of promoting fairness with limited sensitive attribute information. Toward this goal, it is important to reconstruct missing sensitive attributes. Nevertheless, reconstruction errors are inevitable due to the complexity of real-world sensitive attribute reconstruction problems and legal regulations. Thus, we pursue fair learning methods that are robust to reconstruction errors. To this end, we propose Distributionally Robust Fair Optimization (DRFO), which minimizes the worst-case unfairness over all potential probability distributions of missing sensitive attributes instead of the reconstructed one to account for the impact of the reconstruction errors. We provide theoretical and empirical evidence to demonstrate that our method can effectively ensure fairness in recommender systems when only limited sensitive attributes are accessible.
Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference
Li, Haoxuan, Zheng, Chunyuan, Ding, Sihao, Wu, Peng, Geng, Zhi, Feng, Fuli, He, Xiangnan
Selection bias in recommender system arises from the recommendation process of system filtering and the interactive process of user selection. Many previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model, but ignore the fact that potential outcomes for a given user-item pair may vary with the treatments assigned to other user-item pairs, named neighborhood effect. To fill the gap, this paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference and introduces a treatment representation to capture the neighborhood effect. On this basis, we propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect. We further develop two new estimators for estimating the proposed ideal loss. We theoretically establish the connection between the proposed and previous debiasing methods ignoring the neighborhood effect, showing that the proposed methods can achieve unbiased learning when both selection bias and neighborhood effect are present, while the existing methods are biased. Extensive semi-synthetic and real-world experiments are conducted to demonstrate the effectiveness of the proposed methods.
Large Language Models are Learnable Planners for Long-Term Recommendation
Shi, Wentao, He, Xiangnan, Zhang, Yang, Gao, Chongming, Li, Xinyue, Zhang, Jizhi, Wang, Qifan, Feng, Fuli
Planning for both immediate and long-term benefits becomes increasingly important in recommendation. Existing methods apply Reinforcement Learning (RL) to learn planning capacity by maximizing cumulative reward for long-term recommendation. However, the scarcity of recommendation data presents challenges such as instability and susceptibility to overfitting when training RL models from scratch, resulting in sub-optimal performance. In this light, we propose to leverage the remarkable planning capabilities over sparse data of Large Language Models (LLMs) for long-term recommendation. The key to achieving the target lies in formulating a guidance plan following principles of enhancing long-term engagement and grounding the plan to effective and executable actions in a personalized manner. To this end, we propose a Bi-level Learnable LLM Planner framework, which consists of a set of LLM instances and breaks down the learning process into macro-learning and micro-learning to learn macro-level guidance and micro-level personalized recommendation policies, respectively. Extensive experiments validate that the framework facilitates the planning ability of LLMs for long-term recommendation. Our code and data can be found at https://github.com/jizhi-zhang/BiLLP.
A Survey of Generative Search and Recommendation in the Era of Large Language Models
Li, Yongqi, Lin, Xinyu, Wang, Wenjie, Feng, Fuli, Pang, Liang, Li, Wenjie, Nie, Liqiang, He, Xiangnan, Chua, Tat-Seng
With the information explosion on the Web, search and recommendation are foundational infrastructures to satisfying users' information needs. As the two sides of the same coin, both revolve around the same core research problem, matching queries with documents or users with items. In the recent few decades, search and recommendation have experienced synchronous technological paradigm shifts, including machine learning-based and deep learning-based paradigms. Recently, the superintelligent generative large language models have sparked a new paradigm in search and recommendation, i.e., generative search (retrieval) and recommendation, which aims to address the matching problem in a generative manner. In this paper, we provide a comprehensive survey of the emerging paradigm in information systems and summarize the developments in generative search and recommendation from a unified perspective. Rather than simply categorizing existing works, we abstract a unified framework for the generative paradigm and break down the existing works into different stages within this framework to highlight the strengths and weaknesses. And then, we distinguish generative search and recommendation with their unique challenges, identify open problems and future directions, and envision the next information-seeking paradigm.
Leave No Patient Behind: Enhancing Medication Recommendation for Rare Disease Patients
Zhao, Zihao, Jing, Yi, Feng, Fuli, Wu, Jiancan, Gao, Chongming, He, Xiangnan
Medication recommendation systems have gained significant attention in healthcare as a means of providing tailored and effective drug combinations based on patients' clinical information. However, existing approaches often suffer from fairness issues, as recommendations tend to be more accurate for patients with common diseases compared to those with rare conditions. In this paper, we propose a novel model called Robust and Accurate REcommendations for Medication (RAREMed), which leverages the pretrain-finetune learning paradigm to enhance accuracy for rare diseases. RAREMed employs a transformer encoder with a unified input sequence approach to capture complex relationships among disease and procedure codes. Additionally, it introduces two self-supervised pre-training tasks, namely Sequence Matching Prediction (SMP) and Self Reconstruction (SR), to learn specialized medication needs and interrelations among clinical codes. Experimental results on two real-world datasets demonstrate that RAREMed provides accurate drug sets for both rare and common disease patients, thereby mitigating unfairness in medication recommendation systems.
Prospect Personalized Recommendation on Large Language Model-based Agent Platform
Zhang, Jizhi, Bao, Keqin, Wang, Wenjie, Zhang, Yang, Shi, Wentao, Xu, Wanhong, Feng, Fuli, Chua, Tat-Seng
The new kind of Agent-oriented information system, exemplified by GPTs, urges us to inspect the information system infrastructure to support Agent-level information processing and to adapt to the characteristics of Large Language Model (LLM)-based Agents, such as interactivity. In this work, we envisage the prospect of the recommender system on LLM-based Agent platforms and introduce a novel recommendation paradigm called Rec4Agentverse, comprised of Agent Items and Agent Recommender. Rec4Agentverse emphasizes the collaboration between Agent Items and Agent Recommender, thereby promoting personalized information services and enhancing the exchange of information beyond the traditional user-recommender feedback loop. Additionally, we prospect the evolution of Rec4Agentverse and conceptualize it into three stages based on the enhancement of the interaction and information exchange among Agent Items, Agent Recommender, and the user. A preliminary study involving several cases of Rec4Agentverse validates its significant potential for application. Lastly, we discuss potential issues and promising directions for future research.
Lower-Left Partial AUC: An Effective and Efficient Optimization Metric for Recommendation
Shi, Wentao, Wang, Chenxu, Feng, Fuli, Zhang, Yang, Wang, Wenjie, Wu, Junkang, He, Xiangnan
Optimization metrics are crucial for building recommendation systems at scale. However, an effective and efficient metric for practical use remains elusive. While Top-K ranking metrics are the gold standard for optimization, they suffer from significant computational overhead. Alternatively, the more efficient accuracy and AUC metrics often fall short of capturing the true targets of recommendation tasks, leading to suboptimal performance. To overcome this dilemma, we propose a new optimization metric, Lower-Left Partial AUC (LLPAUC), which is computationally efficient like AUC but strongly correlates with Top-K ranking metrics. Compared to AUC, LLPAUC considers only the partial area under the ROC curve in the Lower-Left corner to push the optimization focus on Top-K. We provide theoretical validation of the correlation between LLPAUC and Top-K ranking metrics and demonstrate its robustness to noisy user feedback. We further design an efficient point-wise recommendation loss to maximize LLPAUC and evaluate it on three datasets, validating its effectiveness and robustness.
Robust Prompt Optimization for Large Language Models Against Distribution Shifts
Li, Moxin, Wang, Wenjie, Feng, Fuli, Cao, Yixin, Zhang, Jizhi, Chua, Tat-Seng
Large Language Model (LLM) has demonstrated significant ability in various Natural Language Processing tasks. However, their effectiveness is highly dependent on the phrasing of the task prompt, leading to research on automatic prompt optimization using labeled task data. We reveal that these prompt optimization techniques are vulnerable to distribution shifts such as subpopulation shifts, which are common for LLMs in real-world scenarios such as customer reviews analysis. In this light, we propose a new problem of robust prompt optimization for LLMs against distribution shifts, which requires the prompt optimized over the labeled source group can simultaneously generalize to an unlabeled target group. To solve this problem, we propose Generalized Prompt Optimization framework, which incorporates the unlabeled data from the target group into prompt optimization. Extensive experimental results demonstrate the effectiveness of the proposed framework with significant performance improvement on the target group and comparable performance on the source group.