Not enough data to create a plot.
Try a different view from the menu above.
Feng, Fuli
TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data
Zhu, Fengbin, Liu, Ziyang, Feng, Fuli, Wang, Chao, Li, Moxin, Chua, Tat-Seng
In this work, we address question answering (QA) over a hybrid of tabular and textual data that are very common content on the Web (e.g. SEC filings), where discrete reasoning capabilities are often required. Recently, large language models (LLMs) like GPT-4 have demonstrated strong multi-step reasoning capabilities. We then consider harnessing the amazing power of LLMs to solve our task. We abstract a Step-wise Pipeline for tabular and textual QA, which consists of three key steps, including Extractor, Reasoner and Executor, and initially design an instruction to instantiate the pipeline and validate that GPT-4 outperforms all existing methods. However, utilizing an online LLM like GPT-4 holds various challenges in terms of cost, latency, and data security risk, which motivates us to specialize smaller LLMs in this task. We develop a TAT-LLM language model by fine-tuning LLaMA 2 with the training data generated automatically from existing expert-annotated datasets following the Step-wise Pipeline. The experimental results have verified that our TAT-LLM model can outperform all baseline models, including the previous best fine-tuned models and very large-scale LLMs like GPT-4 on FinQA, TAT-QA and TAT-DQA benchmarks. We hope our work can serve as a pioneering example of specializing smaller language models for specific tasks.
Label Denoising through Cross-Model Agreement
Wang, Yu, Xin, Xin, Meng, Zaiqiao, Jose, Joemon, Feng, Fuli
Learning from corrupted labels is very common in real-world machine-learning applications. Memorizing such noisy labels could affect the learning of the model, leading to sub-optimal performances. In this work, we propose a novel framework to learn robust machine-learning models from noisy labels. Through an empirical study, we find that different models make relatively similar predictions on clean examples, while the predictions on noisy examples vary much more across different models. Motivated by this observation, we propose \em denoising with cross-model agreement \em (DeCA) which aims to minimize the KL-divergence between the true label distributions parameterized by two machine learning models while maximizing the likelihood of data observation. We employ the proposed DeCA on both the binary label scenario and the multiple label scenario. For the binary label scenario, we select implicit feedback recommendation as the downstream task and conduct experiments with four state-of-the-art recommendation models on four datasets. For the multiple-label scenario, the downstream application is image classification on two benchmark datasets. Experimental results demonstrate that the proposed methods significantly improve the model performance compared with normal training and other denoising methods on both binary and multiple-label scenarios.
RoAST: Robustifying Language Models via Adversarial Perturbation with Selective Training
Kim, Jaehyung, Mao, Yuning, Hou, Rui, Yu, Hanchao, Liang, Davis, Fung, Pascale, Wang, Qifan, Feng, Fuli, Huang, Lifu, Khabsa, Madian
Fine-tuning pre-trained language models (LMs) has become the de facto standard in many NLP tasks. Nevertheless, fine-tuned LMs are still prone to robustness issues, such as adversarial robustness and model calibration. Several perspectives of robustness for LMs have been studied independently, but lacking a unified consideration in multiple perspectives. In this paper, we propose Robustifying LMs via Adversarial perturbation with Selective Training (RoAST), a simple yet effective fine-tuning technique to enhance the multi-perspective robustness of LMs in a unified way. RoAST effectively incorporates two important sources for the model robustness, robustness on the perturbed inputs and generalizable knowledge in pre-trained LMs. To be specific, RoAST introduces adversarial perturbation during fine-tuning while the model parameters are selectively updated upon their relative importance to minimize unnecessary deviation. Under a unified evaluation of fine-tuned LMs by incorporating four representative perspectives of model robustness, we demonstrate the effectiveness of RoAST compared to state-of-the-art fine-tuning methods on six different types of LMs, which indicates its usefulness in practice.
Attack Prompt Generation for Red Teaming and Defending Large Language Models
Deng, Boyi, Wang, Wenjie, Feng, Fuli, Deng, Yang, Wang, Qifan, He, Xiangnan
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs. Our code and dataset is available on https://github.com/Aatrox103/SAP .
Is ChatGPT Fair for Recommendation? Evaluating Fairness in Large Language Model Recommendation
Zhang, Jizhi, Bao, Keqin, Zhang, Yang, Wang, Wenjie, Feng, Fuli, He, Xiangnan
The remarkable achievements of Large Language Models (LLMs) have led to the emergence of a novel recommendation paradigm -- Recommendation via LLM (RecLLM). Nevertheless, it is important to note that LLMs may contain social prejudices, and therefore, the fairness of recommendations made by RecLLM requires further investigation. To avoid the potential risks of RecLLM, it is imperative to evaluate the fairness of RecLLM with respect to various sensitive attributes on the user side. Due to the differences between the RecLLM paradigm and the traditional recommendation paradigm, it is problematic to directly use the fairness benchmark of traditional recommendation. To address the dilemma, we propose a novel benchmark called Fairness of Recommendation via LLM (FaiRLLM). This benchmark comprises carefully crafted metrics and a dataset that accounts for eight sensitive attributes1 in two recommendation scenarios: music and movies. By utilizing our FaiRLLM benchmark, we conducted an evaluation of ChatGPT and discovered that it still exhibits unfairness to some sensitive attributes when generating recommendations. Our code and dataset can be found at https://github.com/jizhi-zhang/FaiRLLM.
ADRNet: A Generalized Collaborative Filtering Framework Combining Clinical and Non-Clinical Data for Adverse Drug Reaction Prediction
Li, Haoxuan, Hu, Taojun, Xiong, Zetong, Zheng, Chunyuan, Feng, Fuli, He, Xiangnan, Zhou, Xiao-Hua
Adverse drug reaction (ADR) prediction plays a crucial role in both health care and drug discovery for reducing patient mortality and enhancing drug safety. Recently, many studies have been devoted to effectively predict the drug-ADRs incidence rates. However, these methods either did not effectively utilize non-clinical data, i.e., physical, chemical, and biological information about the drug, or did little to establish a link between content-based and pure collaborative filtering during the training phase. In this paper, we first formulate the prediction of multi-label ADRs as a drug-ADR collaborative filtering problem, and to the best of our knowledge, this is the first work to provide extensive benchmark results of previous collaborative filtering methods on two large publicly available clinical datasets. Then, by exploiting the easy accessible drug characteristics from non-clinical data, we propose ADRNet, a generalized collaborative filtering framework combining clinical and non-clinical data for drug-ADR prediction. Specifically, ADRNet has a shallow collaborative filtering module and a deep drug representation module, which can exploit the high-dimensional drug descriptors to further guide the learning of low-dimensional ADR latent embeddings, which incorporates both the benefits of collaborative filtering and representation learning. Extensive experiments are conducted on two publicly available real-world drug-ADR clinical datasets and two non-clinical datasets to demonstrate the accuracy and efficiency of the proposed ADRNet. The code is available at https://github.com/haoxuanli-pku/ADRnet.
Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation
Wang, Chenxu, Feng, Fuli, Zhang, Yang, Wang, Qifan, Hu, Xunhan, He, Xiangnan
Historical interactions are the default choice for recommender model training, which typically exhibit high sparsity, i.e., most user-item pairs are unobserved missing data. A standard choice is treating the missing data as negative training samples and estimating interaction likelihood between user-item pairs along with the observed interactions. In this way, some potential interactions are inevitably mislabeled during training, which will hurt the model fidelity, hindering the model to recall the mislabeled items, especially the long-tail ones. In this work, we investigate the mislabeling issue from a new perspective of aleatoric uncertainty, which describes the inherent randomness of missing data. The randomness pushes us to go beyond merely the interaction likelihood and embrace aleatoric uncertainty modeling. Towards this end, we propose a new Aleatoric Uncertainty-aware Recommendation (AUR) framework that consists of a new uncertainty estimator along with a normal recommender model. According to the theory of aleatoric uncertainty, we derive a new recommendation objective to learn the estimator. As the chance of mislabeling reflects the potential of a pair, AUR makes recommendations according to the uncertainty, which is demonstrated to improve the recommendation performance of less popular items without sacrificing the overall performance. We instantiate AUR on three representative recommender models: Matrix Factorization (MF), LightGCN, and VAE from mainstream model architectures. Extensive results on two real-world datasets validate the effectiveness of AUR w.r.t. better recommendation results, especially on long-tail items.
Information Retrieval Meets Large Language Models: A Strategic Report from Chinese IR Community
Ai, Qingyao, Bai, Ting, Cao, Zhao, Chang, Yi, Chen, Jiawei, Chen, Zhumin, Cheng, Zhiyong, Dong, Shoubin, Dou, Zhicheng, Feng, Fuli, Gao, Shen, Guo, Jiafeng, He, Xiangnan, Lan, Yanyan, Li, Chenliang, Liu, Yiqun, Lyu, Ziyu, Ma, Weizhi, Ma, Jun, Ren, Zhaochun, Ren, Pengjie, Wang, Zhiqiang, Wang, Mingwen, Wen, Ji-Rong, Wu, Le, Xin, Xin, Xu, Jun, Yin, Dawei, Zhang, Peng, Zhang, Fan, Zhang, Weinan, Zhang, Min, Zhu, Xiaofei
The research field of Information Retrieval (IR) has evolved significantly, expanding beyond traditional search to meet diverse user information needs. Recently, Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference, opening up exciting avenues for IR research. LLMs not only facilitate generative retrieval but also offer improved solutions for user understanding, model evaluation, and user-system interactions. More importantly, the synergistic relationship among IR models, LLMs, and humans forms a new technical paradigm that is more powerful for information seeking. IR models provide real-time and relevant information, LLMs contribute internal knowledge, and humans play a central role of demanders and evaluators to the reliability of information services. Nevertheless, significant challenges exist, including computational costs, credibility concerns, domain-specific limitations, and ethical considerations. To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023, yielding valuable insights. This paper provides a summary of the workshop's outcomes, including the rethinking of IR's core values, the mutual enhancement of LLMs and IR, the proposal of a novel IR technical paradigm, and open challenges.
Doc2SoarGraph: Discrete Reasoning over Visually-Rich Table-Text Documents with Semantic-Oriented Hierarchical Graphs
Zhu, Fengbin, Wang, Chao, Feng, Fuli, Ren, Zifeng, Li, Moxin, Chua, Tat-Seng
Discrete reasoning over table-text documents (e.g., financial reports) gains increasing attention in recent two years. Existing works mostly simplify this challenge by manually selecting and transforming document pages to structured tables and paragraphs, hindering their practical application. In this work, we explore a more realistic problem setting in the form of TAT-DQA, i.e. to answer the question over a visually-rich table-text document. Specifically, we propose a novel Doc2SoarGraph framework with enhanced discrete reasoning capability by harnessing the differences and correlations among different elements (e.g., quantities, dates) of the given question and document with Semantic-oriented hierarchical Graph structures. We conduct extensive experiments on TAT-DQA dataset, and the results show that our proposed framework outperforms the best baseline model by 17.73% and 16.91% in terms of Exact Match (EM) and F1 score respectively on the test set, achieving the new state-of-the-art.
Towards Complex Document Understanding By Discrete Reasoning
Zhu, Fengbin, Lei, Wenqiang, Feng, Fuli, Wang, Chao, Zhang, Haozhou, Chua, Tat-Seng
Document Visual Question Answering (VQA) aims to understand visually-rich documents to answer questions in natural language, which is an emerging research topic for both Natural Language Processing and Computer Vision. In this work, we introduce a new Document VQA dataset, named TAT-DQA, which consists of 3,067 document pages comprising semi-structured table(s) and unstructured text as well as 16,558 question-answer pairs by extending the TAT-QA dataset. These documents are sampled from real-world financial reports and contain lots of numbers, which means discrete reasoning capability is demanded to answer questions on this dataset. Based on TAT-DQA, we further develop a novel model named MHST that takes into account the information in multi-modalities, including text, layout and visual image, to intelligently address different types of questions with corresponding strategies, i.e., extraction or reasoning. Extensive experiments show that the MHST model significantly outperforms the baseline methods, demonstrating its effectiveness. However, the performance still lags far behind that of expert humans. We expect that our new TAT-DQA dataset would facilitate the research on deep understanding of visually-rich documents combining vision and language, especially for scenarios that require discrete reasoning. Also, we hope the proposed model would inspire researchers to design more advanced Document VQA models in future. Our dataset will be publicly available for non-commercial use at https://nextplusplus.github.io/TAT-DQA/.