Not enough data to create a plot.
Try a different view from the menu above.
Felix Wu
Positional Normalization
Boyi Li, Felix Wu, Kilian Q. Weinberger, Serge Belongie
A popular method to reduce the training time of deep neural networks is to normalize activations at each layer. Although various normalization schemes have been proposed, they all follow a common theme: normalize across spatial dimensions and discard the extracted statistics. In this paper, we propose an alternative normalization method that noticeably departs from this convention and normalizes exclusively across channels. We argue that the channel dimension is naturally appealing as it allows us to extract the first and second moments of features extracted at a particular image position. These moments capture structural information about the input image and extracted features, which opens a new avenue along which a network can benefit from feature normalization: Instead of disregarding the normalization constants, we propose to re-inject them into later layers to preserve or transfer structural information in generative networks.
Positional Normalization
Boyi Li, Felix Wu, Kilian Q. Weinberger, Serge Belongie
A popular method to reduce the training time of deep neural networks is to normalize activations at each layer. Although various normalization schemes have been proposed, they all follow a common theme: normalize across spatial dimensions and discard the extracted statistics. In this paper, we propose an alternative normalization method that noticeably departs from this convention and normalizes exclusively across channels. We argue that the channel dimension is naturally appealing as it allows us to extract the first and second moments of features extracted at a particular image position. These moments capture structural information about the input image and extracted features, which opens a new avenue along which a network can benefit from feature normalization: Instead of disregarding the normalization constants, we propose to re-inject them into later layers to preserve or transfer structural information in generative networks.
On Fairness and Calibration
Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, Kilian Q. Weinberger
The machine learning community has become increasingly concerned with the potential for bias and discrimination in predictive models. This has motivated a growing line of work on what it means for a classification procedure to be "fair." In this paper, we investigate the tension between minimizing error disparity across different population groups while maintaining calibrated probability estimates. We show that calibration is compatible only with a single error constraint (i.e.