Farquhar, Gregory
The StarCraft Multi-Agent Challenge
Samvelyan, Mikayel, Rashid, Tabish, de Witt, Christian Schroeder, Farquhar, Gregory, Nardelli, Nantas, Rudner, Tim G. J., Hung, Chia-Man, Torr, Philip H. S., Foerster, Jakob, Whiteson, Shimon
In the last few years, deep multi-agent reinforcement learning (RL) has become a highly active area of research. A particularly challenging class of problems in this area is partially observable, cooperative, multi-agent learning, in which teams of agents must learn to coordinate their behaviour while conditioning only on their private observations. This is an attractive research area since such problems are relevant to a large number of real-world systems and are also more amenable to evaluation than general-sum problems. Standardised environments such as the ALE and MuJoCo have allowed single-agent RL to move beyond toy domains, such as grid worlds. However, there is no comparable benchmark for cooperative multi-agent RL. As a result, most papers in this field use one-off toy problems, making it difficult to measure real progress. In this paper, we propose the StarCraft Multi-Agent Challenge (SMAC) as a benchmark problem to fill this gap. SMAC is based on the popular real-time strategy game StarCraft II and focuses on micromanagement challenges where each unit is controlled by an independent agent that must act based on local observations. We offer a diverse set of challenge maps and recommendations for best practices in benchmarking and evaluations. We also open-source a deep multi-agent RL learning framework including state-of-the-art algorithms. We believe that SMAC can provide a standard benchmark environment for years to come. Videos of our best agents for several SMAC scenarios are available at: https://youtu.be/VZ7zmQ_obZ0.
Multi-Agent Common Knowledge Reinforcement Learning
Foerster, Jakob N., de Witt, Christian A. Schroeder, Farquhar, Gregory, Torr, Philip H. S., Boehmer, Wendelin, Whiteson, Shimon
In multi-agent reinforcement learning, centralised policies can only be executed if agents have access to either the global state or an instantaneous communication channel. An alternative approach that circumvents this limitation is to use centralised training of a set of decentralised policies. However, such policies severely limit the agents' ability to coordinate. We propose multi-agent common knowledge reinforcement learning (MACKRL), which strikes a middle ground between these two extremes. Our approach is based on the insight that, even in partially observable settings, subsets of agents often have some common knowledge that they can exploit to coordinate their behaviour. Common knowledge can arise, e.g., if all agents can reliably observe things in their own field of view and know the field of view of other agents. Using this additional information, it is possible to find a centralised policy that conditions only on agents' common knowledge and that can be executed in a decentralised fashion. A resulting challenge is then to determine at what level agents should coordinate. While the common knowledge shared among all agents may not contain much valuable information, there may be subgroups of agents that share common knowledge useful for coordination. MACKRL addresses this challenge using a hierarchical approach: at each level, a controller can either select a joint action for the agents in a given subgroup, or propose a partition of the agents into smaller subgroups whose actions are then selected by controllers at the next level. While action selection involves sampling hierarchically, learning updates are based on the probability of the joint action, calculated by marginalising across the possible decisions of the hierarchy. We show promising results on both a proof-of-concept matrix game and a multi-agent version of StarCraft II Micromanagement.
DiCE: The Infinitely Differentiable Monte-Carlo Estimator
Foerster, Jakob, Farquhar, Gregory, Al-Shedivat, Maruan, Rocktรคschel, Tim, Xing, Eric P., Whiteson, Shimon
The score function estimator is widely used for estimating gradients of stochastic objectives in stochastic computation graphs (SCG), eg, in reinforcement learning and meta-learning. While deriving the first-order gradient estimators by differentiating a surrogate loss (SL) objective is computationally and conceptually simple, using the same approach for higher-order derivatives is more challenging. Firstly, analytically deriving and implementing such estimators is laborious and not compliant with automatic differentiation. Secondly, repeatedly applying SL to construct new objectives for each order derivative involves increasingly cumbersome graph manipulations. Lastly, to match the first-order gradient under differentiation, SL treats part of the cost as a fixed sample, which we show leads to missing and wrong terms for estimators of higher-order derivatives. To address all these shortcomings in a unified way, we introduce DiCE, which provides a single objective that can be differentiated repeatedly, generating correct estimators of derivatives of any order in SCGs. Unlike SL, DiCE relies on automatic differentiation for performing the requisite graph manipulations. We verify the correctness of DiCE both through a proof and numerical evaluation of the DiCE derivative estimates. We also use DiCE to propose and evaluate a novel approach for multi-agent learning. Our code is available at https://www.github.com/alshedivat/lola.
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Rashid, Tabish, Samvelyan, Mikayel, de Witt, Christian Schroeder, Farquhar, Gregory, Foerster, Jakob, Whiteson, Shimon
In many real-world settings, a team of agents must coordinate their behaviour while acting in a decentralised way. At the same time, it is often possible to train the agents in a centralised fashion in a simulated or laboratory setting, where global state information is available and communication constraints are lifted. Learning joint action-values conditioned on extra state information is an attractive way to exploit centralised learning, but the best strategy for then extracting decentralised policies is unclear. Our solution is QMIX, a novel value-based method that can train decentralised policies in a centralised end-to-end fashion. QMIX employs a network that estimates joint action-values as a complex non-linear combination of per-agent values that condition only on local observations. We structurally enforce that the joint-action value is monotonic in the per-agent values, which allows tractable maximisation of the joint action-value in off-policy learning, and guarantees consistency between the centralised and decentralised policies. We evaluate QMIX on a challenging set of StarCraft II micromanagement tasks, and show that QMIX significantly outperforms existing value-based multi-agent reinforcement learning methods.
Counterfactual Multi-Agent Policy Gradients
Foerster, Jakob N. (University of Oxford) | Farquhar, Gregory (University of Oxford) | Afouras, Triantafyllos (University of Oxford) | Nardelli, Nantas (University of Oxford) | Whiteson, Shimon (University of Oxford)
Many real-world problems, such as network packet routing and the coordination of autonomous vehicles, are naturally modelled as cooperative multi-agent systems. There is a great need for new reinforcement learning methods that can efficiently learn decentralised policies for such systems. To this end, we propose a new multi-agent actor-critic method called counterfactual multi-agent (COMA) policy gradients. COMA uses a centralised critic to estimate the Q-function and decentralised actors to optimise the agents' policies. In addition, to address the challenges of multi-agent credit assignment, it uses a counterfactual baseline that marginalises out a single agent's action, while keeping the other agents' actions fixed. COMA also uses a critic representation that allows the counterfactual baseline to be computed efficiently in a single forward pass. We evaluate COMA in the testbed of StarCraft unit micromanagement, using a decentralised variant with significant partial observability. COMA significantly improves average performance over other multi-agent actor-critic methods in this setting, and the best performing agents are competitive with state-of-the-art centralised controllers that get access to the full state.
Counterfactual Multi-Agent Policy Gradients
Foerster, Jakob, Farquhar, Gregory, Afouras, Triantafyllos, Nardelli, Nantas, Whiteson, Shimon
Cooperative multi-agent systems can be naturally used to model many real world problems, such as network packet routing and the coordination of autonomous vehicles. There is a great need for new reinforcement learning methods that can efficiently learn decentralised policies for such systems. To this end, we propose a new multi-agent actor-critic method called counterfactual multi-agent (COMA) policy gradients. COMA uses a centralised critic to estimate the Q-function and decentralised actors to optimise the agents' policies. In addition, to address the challenges of multi-agent credit assignment, it uses a counterfactual baseline that marginalises out a single agent's action, while keeping the other agents' actions fixed. COMA also uses a critic representation that allows the counterfactual baseline to be computed efficiently in a single forward pass. We evaluate COMA in the testbed of StarCraft unit micromanagement, using a decentralised variant with significant partial observability. COMA significantly improves average performance over other multi-agent actor-critic methods in this setting, and the best performing agents are competitive with state-of-the-art centralised controllers that get access to the full state.