Plotting

 Farid, Humaira


Opioid Named Entity Recognition (ONER-2025) from Reddit

arXiv.org Artificial Intelligence

The opioid overdose epidemic remains a critical public health crisis, particularly in the United States, leading to significant mortality and societal costs. Social media platforms like Reddit provide vast amounts of unstructured data that offer insights into public perceptions, discussions, and experiences related to opioid use. This study leverages Natural Language Processing (NLP), specifically Opioid Named Entity Recognition (ONER-2025), to extract actionable information from these platforms. Our research makes four key contributions. First, we created a unique, manually annotated dataset sourced from Reddit, where users share self-reported experiences of opioid use via different administration routes. This dataset contains 331,285 tokens and includes eight major opioid entity categories. Second, we detail our annotation process and guidelines while discussing the challenges of labeling the ONER-2025 dataset. Third, we analyze key linguistic challenges, including slang, ambiguity, fragmented sentences, and emotionally charged language, in opioid discussions. Fourth, we propose a real-time monitoring system to process streaming data from social media, healthcare records, and emergency services to identify overdose events. Using 5-fold cross-validation in 11 experiments, our system integrates machine learning, deep learning, and transformer-based language models with advanced contextual embeddings to enhance understanding. Our transformer-based models (bert-base-NER and roberta-base) achieved 97% accuracy and F1-score, outperforming baselines by 10.23% (RF=0.88).


Handling Nominals and Inverse Roles using Algebraic Reasoning

arXiv.org Artificial Intelligence

This paper presents a novel SHOI tableau calculus which incorporates algebraic reasoning for deciding ontology consistency. Numerical restrictions imposed by nominals, existential and universal restrictions are encoded into a set of linear inequalities. Column generation and branch-and-price algorithms are used to solve these inequalities. Our preliminary experiments indicate that this calculus performs better on SHOI ontologies than standard tableau methods.