Not enough data to create a plot.
Try a different view from the menu above.
Farajtabar, Mehrdad
Wasserstein Learning of Deep Generative Point Process Models
Xiao, Shuai, Farajtabar, Mehrdad, Ye, Xiaojing, Yan, Junchi, Song, Le, Zha, Hongyuan
Point processes are becoming very popular in modeling asynchronous sequential data due to their sound mathematical foundation and strength in modeling a variety of real-world phenomena. Currently, they are often characterized via intensity function which limits model's expressiveness due to unrealistic assumptions on its parametric form used in practice. Furthermore, they are learned via maximum likelihood approach which is prone to failure in multi-modal distributions of sequences. In this paper, we propose an intensity-free approach for point processes modeling that transforms nuisance processes to a target one. Furthermore, we train the model using a likelihood-free leveraging Wasserstein distance between point processes. Experiments on various synthetic and real-world data substantiate the superiority of the proposed point process model over conventional ones.
Wasserstein Learning of Deep Generative Point Process Models
Xiao, Shuai, Farajtabar, Mehrdad, Ye, Xiaojing, Yan, Junchi, Song, Le, Zha, Hongyuan
Point processes are becoming very popular in modeling asynchronous sequential data due to their sound mathematical foundation and strength in modeling a variety of real-world phenomena. Currently, they are often characterized via intensity function which limits model's expressiveness due to unrealistic assumptions on its parametric form used in practice. Furthermore, they are learned via maximum likelihood approach which is prone to failure in multi-modal distributions of sequences. In this paper, we propose an intensity-free approach for point processes modeling that transforms nuisance processes to a target one. Furthermore, we train the model using a likelihood-free leveraging Wasserstein distance between point processes. Experiments on various synthetic and real-world data substantiate the superiority of the proposed point process model over conventional ones.
Distilling Information Reliability and Source Trustworthiness from Digital Traces
Tabibian, Behzad, Valera, Isabel, Farajtabar, Mehrdad, Song, Le, Schรถlkopf, Bernhard, Gomez-Rodriguez, Manuel
Online knowledge repositories typically rely on their users or dedicated editors to evaluate the reliability of their content. These evaluations can be viewed as noisy measurements of both information reliability and information source trustworthiness. Can we leverage these noisy evaluations, often biased, to distill a robust, unbiased and interpretable measure of both notions? In this paper, we argue that the temporal traces left by these noisy evaluations give cues on the reliability of the information and the trustworthiness of the sources. Then, we propose a temporal point process modeling framework that links these temporal traces to robust, unbiased and interpretable notions of information reliability and source trustworthiness. Furthermore, we develop an efficient convex optimization procedure to learn the parameters of the model from historical traces. Experiments on real-world data gathered from Wikipedia and Stack Overflow show that our modeling framework accurately predicts evaluation events, provides an interpretable measure of information reliability and source trustworthiness, and yields interesting insights about real-world events.
Recurrent Poisson Factorization for Temporal Recommendation
Hosseini, Seyed Abbas, Alizadeh, Keivan, Khodadadi, Ali, Arabzadeh, Ali, Farajtabar, Mehrdad, Zha, Hongyuan, Rabiee, Hamid R.
Poisson factorization is a probabilistic model of users and items for recommendation systems, where the so-called implicit consumer data is modeled by a factorized Poisson distribution. There are many variants of Poisson factorization methods who show state-of-the-art performance on real-world recommendation tasks. However, most of them do not explicitly take into account the temporal behavior and the recurrent activities of users which is essential to recommend the right item to the right user at the right time. In this paper, we introduce Recurrent Poisson Factorization (RPF) framework that generalizes the classical PF methods by utilizing a Poisson process for modeling the implicit feedback. RPF treats time as a natural constituent of the model and brings to the table a rich family of time-sensitive factorization models. To elaborate, we instantiate several variants of RPF who are capable of handling dynamic user preferences and item specification (DRPF), modeling the social-aspect of product adoption (SRPF), and capturing the consumption heterogeneity among users and items (HRPF). We also develop a variational algorithm for approximate posterior inference that scales up to massive data sets. Furthermore, we demonstrate RPF's superior performance over many state-of-the-art methods on synthetic dataset, and large scale real-world datasets on music streaming logs, and user-item interactions in M-Commerce platforms.
Correlated Cascades: Compete or Cooperate
Zarezade, Ali (Sharif University of Technology) | Khodadadi, Ali (Sharif University of Technology) | Farajtabar, Mehrdad (Georgia Institute of Technology) | Rabiee, Hamid R. (Sharif University of Technology) | Zha, Hongyuan (Georgia Institute of Technology)
In real world social networks, there are multiple cascades which are rarely independent. They usually compete or cooperate with each other. Motivated by the reinforcement theory in sociology we leverage the fact that adoption of a user to any behavior is modeled by the aggregation of behaviors of its neighbors. We use a multidimensional marked Hawkes process to model users product adoption and consequently spread of cascades in social networks. The resulting inference problem is proved to be convex and is solved in parallel by using the barrier method. The advantage of the proposed model is twofold; it models correlated cascades and also learns the latent diffusion network. Experimental results on synthetic and two real datasets gathered from Twitter, URL shortening and music streaming services, illustrate the superior performance of the proposed model over the alternatives.
Multistage Campaigning in Social Networks
Farajtabar, Mehrdad, Ye, Xiaojing, Harati, Sahar, Song, Le, Zha, Hongyuan
We consider control problems for multi-stage campaigning over social networks. The dynamic programming framework is employed to balance the high present reward and large penalty on low future outcome in the presence of extensive uncertainties. In particular, we establish theoretical foundations of optimal campaigning over social networks where the user activities are modeled as a multivariate Hawkes process, and we derive a time dependent linear relation between the intensity of exogenous events and several commonly used objective functions of campaigning. We further develop a convex dynamic programming framework for determining the optimal intervention policy that prescribes the required level of external drive at each stage for the desired campaigning result. Experiments on both synthetic data and the real-world MemeTracker dataset show that our algorithm can steer the user activities for optimal campaigning much more accurately than baselines.
Detecting weak changes in dynamic events over networks
Li, Shuang, Xie, Yao, Farajtabar, Mehrdad, Verma, Apurv, Song, Le
Large volume of networked streaming event data are becoming increasingly available in a wide variety of applications, such as social network analysis, Internet traffic monitoring and healthcare analytics. Streaming event data are discrete observation occurred in continuous time, and the precise time interval between two events carries a great deal of information about the dynamics of the underlying systems. How to promptly detect changes in these dynamic systems using these streaming event data? In this paper, we propose a novel change-point detection framework for multi-dimensional event data over networks. We cast the problem into sequential hypothesis test, and derive the likelihood ratios for point processes, which are computed efficiently via an EM-like algorithm that is parameter-free and can be computed in a distributed fashion. We derive a highly accurate theoretical characterization of the false-alarm-rate, and show that it can achieve weak signal detection by aggregating local statistics over time and networks. Finally, we demonstrate the good performance of our algorithm on numerical examples and real-world datasets from twitter and Memetracker.
Learning Granger Causality for Hawkes Processes
Xu, Hongteng, Farajtabar, Mehrdad, Zha, Hongyuan
Learning Granger causality for general point processes is a very challenging task. In this paper, we propose an effective method, learning Granger causality, for a special but significant type of point processes --- Hawkes process. We reveal the relationship between Hawkes process's impact function and its Granger causality graph. Specifically, our model represents impact functions using a series of basis functions and recovers the Granger causality graph via group sparsity of the impact functions' coefficients. We propose an effective learning algorithm combining a maximum likelihood estimator (MLE) with a sparse-group-lasso (SGL) regularizer. Additionally, the flexibility of our model allows to incorporate the clustering structure event types into learning framework. We analyze our learning algorithm and propose an adaptive procedure to select basis functions. Experiments on both synthetic and real-world data show that our method can learn the Granger causality graph and the triggering patterns of the Hawkes processes simultaneously.
Smart broadcasting: Do you want to be seen?
Karimi, Mohammad Reza, Tavakoli, Erfan, Farajtabar, Mehrdad, Song, Le, Gomez-Rodriguez, Manuel
Many users in online social networks are constantly trying to gain attention from their followers by broadcasting posts to them. These broadcasters are likely to gain greater attention if their posts can remain visible for a longer period of time among their followers' most recent feeds. Then when to post? In this paper, we study the problem of smart broadcasting using the framework of temporal point processes, where we model users feeds and posts as discrete events occurring in continuous time. Based on such continuous-time model, then choosing a broadcasting strategy for a user becomes a problem of designing the conditional intensity of her posting events. We derive a novel formula which links this conditional intensity with the visibility of the user in her followers' feeds. Furthermore, by exploiting this formula, we develop an efficient convex optimization framework for the when-to-post problem. Our method can find broadcasting strategies that reach a desired visibility level with provable guarantees. We experimented with data gathered from Twitter, and show that our framework can consistently make broadcasters' post more visible than alternatives.
COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution
Farajtabar, Mehrdad, Wang, Yichen, Rodriguez, Manuel Gomez, Li, Shuang, Zha, Hongyuan, Song, Le
Information diffusion in online social networks is affected by the underlying network topology, but it also has the power to change it. Online users are constantly creating new links when exposed to new information sources, and in turn these links are alternating the way information spreads. However, these two highly intertwined stochastic processes, information diffusion and network evolution, have been predominantly studied separately, ignoring their co-evolutionary dynamics. We propose a temporal point process model, COEVOLVE, for such joint dynamics, allowing the intensity of one process to be modulated by that of the other. This model allows us to efficiently simulate interleaved diffusion and network events, and generate traces obeying common diffusion and network patterns observed in real-world networks. Furthermore, we also develop a convex optimization framework to learn the parameters of the model from historical diffusion and network evolution traces. We experimented with both synthetic data and data gathered from Twitter, and show that our model provides a good fit to the data as well as more accurate predictions than alternatives.