Fang, Zhen
KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection
Luo, Yadan, Chen, Zhuoxiao, Fang, Zhen, Zhang, Zheng, Huang, Zi, Baktashmotlagh, Mahsa
Achieving a reliable LiDAR-based object detector in autonomous driving is paramount, but its success hinges on obtaining large amounts of precise 3D annotations. Active learning (AL) seeks to mitigate the annotation burden through algorithms that use fewer labels and can attain performance comparable to fully supervised learning. Although AL has shown promise, current approaches prioritize the selection of unlabeled point clouds with high uncertainty and/or diversity, leading to the selection of more instances for labeling and reduced computational efficiency. In this paper, we resort to a novel kernel coding rate maximization (KECOR) strategy which aims to identify the most informative point clouds to acquire labels through the lens of information theory. Greedy search is applied to seek desired point clouds that can maximize the minimal number of bits required to encode the latent features. To determine the uniqueness and informativeness of the selected samples from the model perspective, we construct a proxy network of the 3D detector head and compute the outer product of Jacobians from all proxy layers to form the empirical neural tangent kernel (NTK) matrix. To accommodate both one-stage (i.e., SECOND) and two-stage detectors (i.e., PVRCNN), we further incorporate the classification entropy maximization and well trade-off between detection performance and the total number of bounding boxes selected for annotation. Extensive experiments conducted on two 3D benchmarks and a 2D detection dataset evidence the superiority and versatility of the proposed approach. Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art AL method, without compromising detection performance.
Moderately Distributional Exploration for Domain Generalization
Dai, Rui, Zhang, Yonggang, Fang, Zhen, Han, Bo, Tian, Xinmei
Domain generalization (DG) aims to tackle the distribution shift between training domains and unknown target domains. Generating new domains is one of the most effective approaches, yet its performance gain depends on the distribution discrepancy between the generated and target domains. Distributionally robust optimization is promising to tackle distribution discrepancy by exploring domains in an uncertainty set. However, the uncertainty set may be overwhelmingly large, leading to low-confidence prediction in DG. It is because a large uncertainty set could introduce domains containing semantically different factors from training domains. To address this issue, we propose to perform a $\textbf{mo}$derately $\textbf{d}$istributional $\textbf{e}$xploration (MODE) for domain generalization. Specifically, MODE performs distribution exploration in an uncertainty $\textit{subset}$ that shares the same semantic factors with the training domains. We show that MODE can endow models with provable generalization performance on unknown target domains. The experimental results show that MODE achieves competitive performance compared to state-of-the-art baselines.
Is Out-of-Distribution Detection Learnable?
Fang, Zhen, Li, Yixuan, Lu, Jie, Dong, Jiahua, Han, Bo, Liu, Feng
Supervised learning aims to train a classifier under the assumption that training and test data are from the same distribution. To ease the above assumption, researchers have studied a more realistic setting: out-of-distribution (OOD) detection, where test data may come from classes that are unknown during training (i.e., OOD data). Due to the unavailability and diversity of OOD data, good generalization ability is crucial for effective OOD detection algorithms. To study the generalization of OOD detection, in this paper, we investigate the probably approximately correct (PAC) learning theory of OOD detection, which is proposed by researchers as an open problem. First, we find a necessary condition for the learnability of OOD detection. Then, using this condition, we prove several impossibility theorems for the learnability of OOD detection under some scenarios. Although the impossibility theorems are frustrating, we find that some conditions of these impossibility theorems may not hold in some practical scenarios. Based on this observation, we next give several necessary and sufficient conditions to characterize the learnability of OOD detection in some practical scenarios. Lastly, we also offer theoretical supports for several representative OOD detection works based on our OOD theory.
Learning Bounds for Open-Set Learning
Fang, Zhen, Lu, Jie, Liu, Anjin, Liu, Feng, Zhang, Guangquan
Traditional supervised learning aims to train a classifier in the closed-set world, where training and test samples share the same label space. In this paper, we target a more challenging and realistic setting: open-set learning (OSL), where there exist test samples from the classes that are unseen during training. Although researchers have designed many methods from the algorithmic perspectives, there are few methods that provide generalization guarantees on their ability to achieve consistent performance on different training samples drawn from the same distribution. Motivated by the transfer learning and probably approximate correct (PAC) theory, we make a bold attempt to study OSL by proving its generalization error-given training samples with size n, the estimation error will get close to order O_p(1/\sqrt{n}). This is the first study to provide a generalization bound for OSL, which we do by theoretically investigating the risk of the target classifier on unknown classes. According to our theory, a novel algorithm, called auxiliary open-set risk (AOSR) is proposed to address the OSL problem. Experiments verify the efficacy of AOSR. The code is available at github.com/Anjin-Liu/Openset_Learning_AOSR.
How does the Combined Risk Affect the Performance of Unsupervised Domain Adaptation Approaches?
Zhong, Li, Fang, Zhen, Liu, Feng, Lu, Jie, Yuan, Bo, Zhang, Guangquan
Unsupervised domain adaptation (UDA) aims to train a target classifier with labeled samples from the source domain and unlabeled samples from the target domain. Classical UDA learning bounds show that target risk is upper bounded by three terms: source risk, distribution discrepancy, and combined risk. Based on the assumption that the combined risk is a small fixed value, methods based on this bound train a target classifier by only minimizing estimators of the source risk and the distribution discrepancy. However, the combined risk may increase when minimizing both estimators, which makes the target risk uncontrollable. Hence the target classifier cannot achieve ideal performance if we fail to control the combined risk. To control the combined risk, the key challenge takes root in the unavailability of the labeled samples in the target domain. To address this key challenge, we propose a method named E-MixNet. E-MixNet employs enhanced mixup, a generic vicinal distribution, on the labeled source samples and pseudo-labeled target samples to calculate a proxy of the combined risk. Experiments show that the proxy can effectively curb the increase of the combined risk when minimizing the source risk and distribution discrepancy. Furthermore, we show that if the proxy of the combined risk is added into loss functions of four representative UDA methods, their performance is also improved.
Learning from a Complementary-label Source Domain: Theory and Algorithms
Zhang, Yiyang, Liu, Feng, Fang, Zhen, Yuan, Bo, Zhang, Guangquan, Lu, Jie
In unsupervised domain adaptation (UDA), a classifier for the target domain is trained with massive true-label data from the source domain and unlabeled data from the target domain. However, collecting fully-true-label data in the source domain is high-cost and sometimes impossible. Compared to the true labels, a complementary label specifies a class that a pattern does not belong to, hence collecting complementary labels would be less laborious than collecting true labels. Thus, in this paper, we propose a novel setting that the source domain is composed of complementary-label data, and a theoretical bound for it is first proved. We consider two cases of this setting, one is that the source domain only contains complementary-label data (completely complementary unsupervised domain adaptation, CC-UDA), and the other is that the source domain has plenty of complementary-label data and a small amount of true-label data (partly complementary unsupervised domain adaptation, PC-UDA). To this end, a complementary label adversarial network} (CLARINET) is proposed to solve CC-UDA and PC-UDA problems. CLARINET maintains two deep networks simultaneously, where one focuses on classifying complementary-label source data and the other takes care of source-to-target distributional adaptation. Experiments show that CLARINET significantly outperforms a series of competent baselines on handwritten-digits-recognition and objects-recognition tasks.
Clarinet: A One-step Approach Towards Budget-friendly Unsupervised Domain Adaptation
Zhang, Yiyang, Liu, Feng, Fang, Zhen, Yuan, Bo, Zhang, Guangquan, Lu, Jie
In unsupervised domain adaptation (UDA), classifiers for the target domain are trained with massive true-label data from the source domain and unlabeled data from the target domain. However, it may be difficult to collect fully-true-label data in a source domain given a limited budget. To mitigate this problem, we consider a novel problem setting where the classifier for the target domain has to be trained with complementary-label data from the source domain and unlabeled data from the target domain named budget-friendly UDA (BFUDA). The key benefit is that it is much less costly to collect complementary-label source data (required by BFUDA) than collecting the true-label source data (required by ordinary UDA). To this end, the complementary label adversarial network (CLARINET) is proposed to solve the BFUDA problem. CLARINET maintains two deep networks simultaneously, where one focuses on classifying complementary-label source data and the other takes care of the source-to-target distributional adaptation. Experiments show that CLARINET significantly outperforms a series of competent baselines.
Bridging the Theoretical Bound and Deep Algorithms for Open Set Domain Adaptation
Zhong, Li, Fang, Zhen, Liu, Feng, Yuan, Bo, Zhang, Guangquan, Lu, Jie
In the unsupervised open set domain adaptation (UOSDA), the target domain contains unknown classes that are not observed in the source domain. Researchers in this area aim to train a classifier to accurately: 1) recognize unknown target data (data with unknown classes) and, 2) classify other target data. To achieve this aim, a previous study has proven an upper bound of the target-domain risk, and the open set difference, as an important term in the upper bound, is used to measure the risk on unknown target data. By minimizing the upper bound, a shallow classifier can be trained to achieve the aim. However, if the classifier is very flexible (e.g., deep neural networks (DNNs)), the open set difference will converge to a negative value when minimizing the upper bound, which causes an issue where most target data are recognized as unknown data. To address this issue, we propose a new upper bound of target-domain risk for UOSDA, which includes four terms: source-domain risk, $\epsilon$-open set difference ($\Delta_\epsilon$), a distributional discrepancy between domains, and a constant. Compared to the open set difference, $\Delta_\epsilon$ is more robust against the issue when it is being minimized, and thus we are able to use very flexible classifiers (i.e., DNNs). Then, we propose a new principle-guided deep UOSDA method that trains DNNs via minimizing the new upper bound. Specifically, source-domain risk and $\Delta_\epsilon$ are minimized by gradient descent, and the distributional discrepancy is minimized via a novel open-set conditional adversarial training strategy. Finally, compared to existing shallow and deep UOSDA methods, our method shows the state-of-the-art performance on several benchmark datasets, including digit recognition (MNIST, SVHN, USPS), object recognition (Office-31, Office-Home), and face recognition (PIE).
Open Set Domain Adaptation: Theoretical Bound and Algorithm
Fang, Zhen, Lu, Jie, Liu, Feng, Xuan, Junyu, Zhang, Guangquan
Unsupervised domain adaptation for classification tasks has achieved great progress in leveraging the knowledge in a labeled (source) domain to improve the task performance in an unlabeled (target) domain by mitigating the effect of distribution discrepancy. However, most existing methods can only handle unsupervised closed set domain adaptation (UCSDA), where the source and target domains share the same label set. In this paper, we target a more challenging but realistic setting: unsupervised open set domain adaptation (UOSDA), where the target domain has unknown classes that the source domain does not have. This study is the first to give the generalization bound of open set domain adaptation through theoretically investigating the risk of the target classifier on the unknown classes. The proposed generalization bound for open set domain adaptation has a special term, namely open set difference, which reflects the risk of the target classifier on unknown classes. According to this generalization bound, we propose a novel and theoretically guided unsupervised open set domain adaptation method: Distribution Alignment with Open Difference (DAOD), which is based on the structural risk minimization principle and open set difference regularization. The experiments on several benchmark datasets show the superior performance of the proposed UOSDA method compared with the state-of-the-art methods in the literature.