Plotting

 Fang, Yixiang


RRCN: A Reinforced Random Convolutional Network based Reciprocal Recommendation Approach for Online Dating

arXiv.org Artificial Intelligence

Recently, the reciprocal recommendation, especially for online dating applications, has attracted more and more research attention. Different from conventional recommendation problems, the reciprocal recommendation aims to simultaneously best match users' mutual preferences. Intuitively, the mutual preferences might be affected by a few key attributes that users like or dislike. Meanwhile, the interactions between users' attributes and their key attributes are also important for key attributes selection. Motivated by these observations, in this paper we propose a novel reinforced random convolutional network (RRCN) approach for the reciprocal recommendation task. In particular, we technically propose a novel random CNN component that can randomly convolute non-adjacent features to capture their interaction information and learn feature embeddings of key attributes to make the final recommendation. Moreover, we design a reinforcement learning based strategy to integrate with the random CNN component to select salient attributes to form the candidate set of key attributes. We evaluate the proposed RRCN against a number of both baselines and the state-of-the-art approaches on two real-world datasets, and the promising results have demonstrated the superiority of RRCN against the compared approaches in terms of a number of evaluation criteria.


Inductive Link Prediction for Nodes Having Only Attribute Information

arXiv.org Machine Learning

Predicting the link between two nodes is a fundamental problem for graph data analytics. In attributed graphs, both the structure and attribute information can be utilized for link prediction. Most existing studies focus on transductive link prediction where both nodes are already in the graph. However, many real-world applications require inductive prediction for new nodes having only attribute information. It is more challenging since the new nodes do not have structure information and cannot be seen during the model training. To solve this problem, we propose a model called DEAL, which consists of three components: two node embedding encoders and one alignment mechanism. The two encoders aim to output the attribute-oriented node embedding and the structure-oriented node embedding, and the alignment mechanism aligns the two types of embeddings to build the connections between the attributes and links. Our model DEAL is versatile in the sense that it works for both inductive and transductive link prediction. Extensive experiments on several benchmark datasets show that our proposed model significantly outperforms existing inductive link prediction methods, and also outperforms the state-of-the-art methods on transductive link prediction.