Goto

Collaborating Authors

 Fang, Fang


Is There More Pattern in Knowledge Graph? Exploring Proximity Pattern for Knowledge Graph Embedding

arXiv.org Artificial Intelligence

Modeling of relation pattern is the core focus of previous Knowledge Graph Embedding works, which represents how one entity is related to another semantically by some explicit relation. However, there is a more natural and intuitive relevancy among entities being always ignored, which is that how one entity is close to another semantically, without the consideration of any explicit relation. We name such semantic phenomenon in knowledge graph as proximity pattern. In this work, we explore the problem of how to define and represent proximity pattern, and how it can be utilized to help knowledge graph embedding. Firstly, we define the proximity of any two entities according to their statistically shared queries, then we construct a derived graph structure and represent the proximity pattern from global view. Moreover, with the original knowledge graph, we design a Chained couPle-GNN (CP-GNN) architecture to deeply merge the two patterns (graphs) together, which can encode a more comprehensive knowledge embedding. Being evaluated on FB15k-237 and WN18RR datasets, CP-GNN achieves state-of-the-art results for Knowledge Graph Completion task, and can especially boost the modeling capacity for complex queries that contain multiple answer entities, proving the effectiveness of introduced proximity pattern.


Human and Ideal Observers for Detecting Image Curves

Neural Information Processing Systems

This paper compares the ability of human observers to detect target image curves with that of an ideal observer. The target curves are sampled from a generative model which specifies (probabilistically) the geometry and local intensity properties of the curve. The ideal observer performs Bayesian inference on the generative model using MAP estimation. Varying the probability model for the curve geometry enables us investigate whether human performance is best for target curves that obey specific shape statistics, in particular those observed on natural shapes. Experiments are performed with data on both rectangular and hexagonal lattices. Our results show that human observers' performance approaches that of the ideal observer and are, in general, closest to the ideal for conditions where the target curve tends to be straight or similar to natural statistics on curves. This suggests a bias of human observers towards straight curves and natural statistics.


Human and Ideal Observers for Detecting Image Curves

Neural Information Processing Systems

This paper compares the ability of human observers to detect target image curveswith that of an ideal observer. The target curves are sampled froma generative model which specifies (probabilistically) the geometry andlocal intensity properties of the curve. The ideal observer performs Bayesian inference on the generative model using MAP estimation. Varyingthe probability model for the curve geometry enables us investigate whether human performance is best for target curves that obey specific shape statistics, in particular those observed on natural shapes. Experiments are performed with data on both rectangular and hexagonal lattices. Our results show that human observers' performance approaches that of the ideal observer and are, in general, closest to the ideal for conditions wherethe target curve tends to be straight or similar to natural statistics on curves. This suggests a bias of human observers towards straight curves and natural statistics.