Not enough data to create a plot.
Try a different view from the menu above.
Engelhardt, Barbara E.
Unsupervised Domain Adaptation Using Approximate Label Matching
Ash, Jordan T., Schapire, Robert E., Engelhardt, Barbara E.
Domain adaptation addresses the problem created when training data is generated by a so-called source distribution, but test data is generated by a significantly different target distribution. In this work, we present approximate label matching (ALM), a new unsupervised domain adaptation technique that creates and leverages a rough labeling on the test samples, then uses these noisy labels to learn a transformation that aligns the source and target samples. We show that the transformation estimated by ALM has favorable properties compared to transformations estimated by other methods, which do not use any kind of target labeling. Our model is regularized by requiring that a classifier trained to discriminate source from transformed target samples cannot distinguish between the two. We experiment with ALM on simulated and real data, and show that it outperforms techniques commonly used in the field.
Coupled Compound Poisson Factorization
Basbug, Mehmet E., Engelhardt, Barbara E.
We present a general framework, the coupled compound Poisson factorization (CCPF), to capture the missing-data mechanism in extremely sparse data sets by coupling a hierarchical Poisson factorization with an arbitrary data-generating model. We derive a stochastic variational inference algorithm for the resulting model and, as examples of our framework, implement three different data-generating models---a mixture model, linear regression, and factor analysis---to robustly model non-random missing data in the context of clustering, prediction, and matrix factorization. In all three cases, we test our framework against models that ignore the missing-data mechanism on large scale studies with non-random missing data, and we show that explicitly modeling the missing-data mechanism substantially improves the quality of the results, as measured using data log likelihood on a held-out test set.
Dynamic Collaborative Filtering with Compound Poisson Factorization
Jerfel, Ghassen, Basbug, Mehmet E., Engelhardt, Barbara E.
Model-based collaborative filtering analyzes user-item interactions to infer latent factors that represent user preferences and item characteristics in order to predict future interactions. Most collaborative filtering algorithms assume that these latent factors are static, although it has been shown that user preferences and item perceptions drift over time. In this paper, we propose a conjugate and numerically stable dynamic matrix factorization (DCPF) based on compound Poisson matrix factorization that models the smoothly drifting latent factors using Gamma-Markov chains. We propose a numerically stable Gamma chain construction, and then present a stochastic variational inference approach to estimate the parameters of our model. We apply our model to time-stamped ratings data sets: Netflix, Yelp, and Last.fm, where DCPF achieves a higher predictive accuracy than state-of-the-art static and dynamic factorization models.
Hierarchical Compound Poisson Factorization
Basbug, Mehmet E., Engelhardt, Barbara E.
Non-negative matrix factorization models based on a hierarchical Gamma-Poisson structure capture user and item behavior effectively in extremely sparse data sets, making them the ideal choice for collaborative filtering applications. Hierarchical Poisson factorization (HPF) in particular has proved successful for scalable recommendation systems with extreme sparsity. HPF, however, suffers from a tight coupling of sparsity model (absence of a rating) and response model (the value of the rating), which limits the expressiveness of the latter. Here, we introduce hierarchical compound Poisson factorization (HCPF) that has the favorable Gamma-Poisson structure and scalability of HPF to high-dimensional extremely sparse matrices. More importantly, HCPF decouples the sparsity model from the response model, allowing us to choose the most suitable distribution for the response. HCPF can capture binary, non-negative discrete, non-negative continuous, and zero-inflated continuous responses. We compare HCPF with HPF on nine discrete and three continuous data sets and conclude that HCPF captures the relationship between sparsity and response better than HPF.
Differential gene co-expression networks via Bayesian biclustering models
Gao, Chuan, Zhao, Shiwen, McDowell, Ian C., Brown, Christopher D., Engelhardt, Barbara E.
Identifying latent structure in large data matrices is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are locally co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes whose covariation may be observed in only a subset of the samples. Our biclustering method, BicMix, has desirable properties, including allowing overcomplete representations of the data, computational tractability, and jointly modeling unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios. Further, we develop a method to recover gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and recover a gene co-expression network that is differential across ER+ and ER- samples.