Plotting

 Durstewitz, Daniel


Identifying nonlinear dynamical systems from multi-modal time series data

arXiv.org Machine Learning

Empirically observed time series in physics, biology, or medicine, are commonly generated by some underlying dynamical system (DS) which is the target of scientific interest. There is an increasing interest to harvest machine learning methods to reconstruct this latent DS in a completely data-driven, unsupervised way. In many areas of science it is common to sample time series observations from many data modalities simultaneously, e.g. electrophysiological and behavioral time series in a typical neuroscience experiment. However, current machine learning tools for reconstructing DSs usually focus on just one data modality. Here we propose a general framework for multi-modal data integration for the purpose of nonlinear DS identification and cross-modal prediction. This framework is based on dynamically interpretable recurrent neural networks as general approximators of nonlinear DSs, coupled to sets of modality-specific decoder models from the class of generalized linear models. Both an expectation-maximization and a variational inference algorithm for model training are advanced and compared. We show on nonlinear DS benchmarks that our algorithms can efficiently compensate for too noisy or missing information in one data channel by exploiting other channels, and demonstrate on experimental neuroscience data how the algorithm learns to link different data domains to the underlying dynamics


How to train RNNs on chaotic data?

arXiv.org Machine Learning

Recurrent neural networks (RNNs) are wide-spread machine learning tools for modeling sequential and time series data. They are notoriously hard to train because their loss gradients backpropagated in time tend to saturate or diverge during training. This is known as the exploding and vanishing gradient problem. Previous solutions to this issue either built on rather complicated, purpose-engineered architectures with gated memory buffers, or - more recently - imposed constraints that ensure convergence to a fixed point or restrict (the eigenspectrum of) the recurrence matrix. Such constraints, however, convey severe limitations on the expressivity of the RNN. Essential intrinsic dynamics such as multistability or chaos are disabled. This is inherently at disaccord with the chaotic nature of many, if not most, time series encountered in nature and society. Here we offer a comprehensive theoretical treatment of this problem by relating the loss gradients during RNN training to the Lyapunov spectrum of RNN-generated orbits. We mathematically prove that RNNs producing stable equilibrium or cyclic behavior have bounded gradients, whereas the gradients of RNNs with chaotic dynamics always diverge. Based on these analyses and insights, we offer an effective yet simple training technique for chaotic data and guidance on how to choose relevant hyperparameters according to the Lyapunov spectrum.


Inferring Dynamical Systems with Long-Range Dependencies through Line Attractor Regularization

arXiv.org Machine Learning

I NFERRING DYNAMICAL SYSTEMS WITH LONG-RANGE DEPENDENCIES THROUGH LINE ATTRACTOR REGULARIZATIONDominik Schmidt 1*, Georgia Koppe 1*, Max Beutelspacher 1,2, Daniel Durstewitz 1,3 1 Department of Theoretical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany 3 Faculty of Physics and Astronomy, Heidelberg University * These authors contributed equally contact: {dominik.schmidt,georgia.koppe,daniel.durstewitz} A BSTRACT V anilla RNN with ReLU activation have a simple structure that is amenable to systematic dynamical systems analysis and interpretation, but they suffer from the exploding vs. vanishing gradients problem. Recent attempts to retain this simplicity while alleviating the gradient problem are based on proper initialization schemes or orthogonality/unitary constraints on the RNN's recurrence matrix, which, however, comes with limitations to its expressive power with regards to dynamical systems phenomena like chaos or multi-stability. Here, we instead suggest a regularization scheme that pushes part of the RNN's latent subspace toward a line attractor configuration that enables long short-term memory and arbitrarily slow time scales. We show that our approach excels on a number of benchmarks like the sequential MNIST or multiplication problems, and enables reconstruction of dynamical systems which harbor widely different time scales. 1 I NTRODUCTION Theories of complex systems in biology and physics are often formulated in terms of sets of stochastic differential or difference equations, i.e. as stochastic dynamical systems (DS). A longstanding desire is to retrieve these generating dynamical equations directly from observed time series data (Kantz & Schreiber, 2004). However, vanilla RNN as often used in this context are well known for their problems in capturing long-term dependencies and slow time scales in the data (Hochreiter & Schmidhuber, 1997; Bengio et al., 1994).


Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI

arXiv.org Machine Learning

A major tenet in theoretical neuroscience is that cognitive and behavioral processes are ultimately implemented in terms of the neural system dynamics. Accordingly, a major aim for the analysis of neurophysiological measurements should lie in the identification of the computational dynamics underlying task processing. Here we advance a state space model (SSM) based on generative piecewise-linear recurrent neural networks (PLRNN) to assess dynamics from neuroimaging data. In contrast to many other nonlinear time series models which have been proposed for reconstructing latent dynamics, our model is easily interpretable in neural terms, amenable to systematic dynamical systems analysis of the resulting set of equations, and can straightforwardly be transformed into an equivalent continuous-time dynamical system. The major contributions of this paper are the introduction of a new observation model suitable for functional magnetic resonance imaging (fMRI) coupled to the latent PLRNN, an efficient stepwise training procedure that forces the latent model to capture the 'true' underlying dynamics rather than just fitting (or predicting) the observations, and of an empirical measure based on the Kullback-Leibler divergence to evaluate from empirical time series how well this goal of approximating the underlying dynamics has been achieved. We validate and illustrate the power of our approach on simulated 'ground-truth' dynamical (benchmark) systems as well as on actual experimental fMRI time series. Given that fMRI is one of the most common techniques for measuring brain activity non-invasively in human subjects, this approach may provide a novel step toward analyzing aberrant (nonlinear) dynamics for clinical assessment or neuroscientific research.


Sparse convolutional coding for neuronal assembly detection

Neural Information Processing Systems

Cell assemblies, originally proposed by Donald Hebb (1949), are subsets of neurons firing in a temporally coordinated way that gives rise to repeated motifs supposed to underly neural representations and information processing. Although Hebb's original proposal dates back many decades, the detection of assemblies and their role in coding is still an open and current research topic, partly because simultaneous recordings from large populations of neurons became feasible only relatively recently. Most current and easy-to-apply computational techniques focus on the identification of strictly synchronously spiking neurons. In this paper we propose a new algorithm, based on sparse convolutional coding, for detecting recurrent motifs of arbitrary structure up to a given length. Testing of our algorithm on synthetically generated datasets shows that it outperforms established methods and accurately identifies the temporal structure of embedded assemblies, even when these contain overlapping neurons or when strong background noise is present. Moreover, exploratory analysis of experimental datasets from hippocampal slices and cortical neuron cultures have provided promising results.


A State Space Approach for Piecewise-Linear Recurrent Neural Networks for Reconstructing Nonlinear Dynamics from Neural Measurements

arXiv.org Machine Learning

The computational properties of neural systems are often thought to be implemented in terms of their network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit (MSU) recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a state space representation of the dynamics, but would wish to have access to its governing equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, the approach is applied to MSU recordings from the rodent anterior cingulate cortex obtained during performance of a classical working memory task, delayed alternation. A model with 5 states turned out to be sufficient to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover the relevant dynamics underlying observed neuronal time series, and directly link them to computational properties.