Durrande, Nicolas
Approximating Gaussian Process Emulators with Linear Inequality Constraints and Noisy Observations via MC and MCMC
López-Lopera, Andrés F., Bachoc, François, Durrande, Nicolas, Roustant, Olivier
Due to the truncated Gaussianity of the posterior, its distribution has to be approximated. In this work, we consider Monte Carlo (MC) and Markov chain Monte Carlo (MCMC). However, strictly interpolating the observations may entail expensive computations due to highly restrictive sample spaces. Having (constrained) GP emulators when data are actually noisy is also of interest. We introduce a noise term for the relaxation of the interpolation conditions, and we develop the corresponding approximation of GP emulators under linear inequality constraints. We show with various toy examples that the performance of MC and MCMC samplers improves when considering noisy observations. Finally, on a 5D monotonic example, we show that our framework still provides high effective sample rates with reasonable running times.
Scalable GAM using sparse variational Gaussian processes
Adam, Vincent, Durrande, Nicolas, John, ST
Generalized additive models (GAMs) are a widely used class of models of interest to statisticians as they provide a flexible way to design interpretable models of data beyond linear models. We here propose a scalable and well-calibrated Bayesian treatment of GAMs using Gaussian processes (GPs) and leveraging recent advances in variational inference. We use sparse GPs to represent each component and exploit the additive structure of the model to efficiently represent a Gaussian a posteriori coupling between the components.
Variational Fourier features for Gaussian processes
Hensman, James, Durrande, Nicolas, Solin, Arno
This work brings together two powerful concepts in Gaussian processes: the variational approach to sparse approximation and the spectral representation of Gaussian processes. This gives rise to an approximation that inherits the benefits of the variational approach but with the representational power and computational scalability of spectral representations. The work hinges on a key result that there exist spectral features related to a finite domain of the Gaussian process which exhibit almost-independent covariances. We derive these expressions for Matern kernels in one dimension, and generalize to more dimensions using kernels with specific structures. Under the assumption of additive Gaussian noise, our method requires only a single pass through the dataset, making for very fast and accurate computation. We fit a model to 4 million training points in just a few minutes on a standard laptop. With non-conjugate likelihoods, our MCMC scheme reduces the cost of computation from O(NM2) (for a sparse Gaussian process) to O(NM) per iteration, where N is the number of data and M is the number of features.
Finite-dimensional Gaussian approximation with linear inequality constraints
López-Lopera, Andrés F., Bachoc, François, Durrande, Nicolas, Roustant, Olivier
Introducing inequality constraints in Gaussian process (GP) models can lead to more realistic uncertainties in learning a great variety of real-world problems. We consider the finite-dimensional Gaussian approach from Maatouk and Bay (2017) which can satisfy inequality conditions everywhere (either boundedness, monotonicity or convexity). Our contributions are threefold. First, we extend their approach in order to deal with general sets of linear inequalities. Second, we explore several Markov Chain Monte Carlo (MCMC) techniques to approximate the posterior distribution. Third, we investigate theoretical and numerical properties of the constrained likelihood for covariance parameter estimation. According to experiments on both artificial and real data, our full framework together with a Hamiltonian Monte Carlo-based sampler provides efficient results on both data fitting and uncertainty quantification.
Nested Kriging predictions for datasets with large number of observations
Rullière, Didier, Durrande, Nicolas, Bachoc, François, Chevalier, Clément
This work falls within the context of predicting the value of a real function at some input locations given a limited number of observations of this function. The Kriging interpolation technique (or Gaussian process regression) is often considered to tackle such a problem but the method suffers from its computational burden when the number of observation points is large. We introduce in this article nested Kriging predictors which are constructed by aggregating sub-models based on subsets of observation points. This approach is proven to have better theoretical properties than other aggregation methods that can be found in the literature. Contrarily to some other methods it can be shown that the proposed aggregation method is consistent. Finally, the practical interest of the proposed method is illustrated on simulated datasets and on an industrial test case with $10^4$ observations in a 6-dimensional space.
An analytic comparison of regularization methods for Gaussian Processes
Mohammadi, Hossein, Riche, Rodolphe Le, Durrande, Nicolas, Touboul, Eric, Bay, Xavier
Gaussian Processes (GPs) are a popular approach to predict the output of a parameterized experiment. They have many applications in the field of Computer Experiments, in particular to perform sensitivity analysis, adaptive design of experiments and global optimization. Nearly all of the applications of GPs require the inversion of a covariance matrix that, in practice, is often ill-conditioned. Regularization methodologies are then employed with consequences on the GPs that need to be better understood.The two principal methods to deal with ill-conditioned covariance matrices are i) pseudoinverse and ii) adding a positive constant to the diagonal (the so-called nugget regularization).The first part of this paper provides an algebraic comparison of PI and nugget regularizations. Redundant points, responsible for covariance matrix singularity, are defined. It is proven that pseudoinverse regularization, contrarily to nugget regularization, averages the output values and makes the variance zero at redundant points. However, pseudoinverse and nugget regularizations become equivalent as the nugget value vanishes. A measure for data-model discrepancy is proposed which serves for choosing a regularization technique.In the second part of the paper, a distribution-wise GP is introduced that interpolates Gaussian distributions instead of data points. Distribution-wise GP can be seen as an improved regularization method for GPs.
Invariances of random fields paths, with applications in Gaussian Process Regression
Ginsbourger, David, Roustant, Olivier, Durrande, Nicolas
We study pathwise invariances of centred random fields that can be controlled through the covariance. A result involving composition operators is obtained in second-order settings, and we show that various path properties including additivity boil down to invariances of the covariance kernel. These results are extended to a broader class of operators in the Gaussian case, via the Lo\`eve isometry. Several covariance-driven pathwise invariances are illustrated, including fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process regression.
ANOVA kernels and RKHS of zero mean functions for model-based sensitivity analysis
Durrande, Nicolas, Ginsbourger, David, Roustant, Olivier, Carraro, Laurent
Given a reproducing kernel Hilbert space H of real-valued functions and a suitable measure mu over the source space D (subset of R), we decompose H as the sum of a subspace of centered functions for mu and its orthogonal in H. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the e ffect of each (group of) variable(s) and computing sensitivity indices without recursivity.
Additive Covariance Kernels for High-Dimensional Gaussian Process Modeling
Durrande, Nicolas, Ginsbourger, David, Roustant, Olivier, Carraro, Laurent
Gaussian process models -also called Kriging models- are often used as mathematical approximations of expensive experiments. However, the number of observation required for building an emulator becomes unrealistic when using classical covariance kernels when the dimension of input increases. In oder to get round the curse of dimensionality, a popular approach is to consider simplified models such as additive models. The ambition of the present work is to give an insight into covariance kernels that are well suited for building additive Kriging models and to describe some properties of the resulting models.