Duffield, Nick
Temporal Network Sampling
Ahmed, Nesreen K., Duffield, Nick, Rossi, Ryan A.
Temporal networks representing a stream of timestamped edges are seemingly ubiquitous in the real-world. However, the massive size and continuous nature of these networks make them fundamentally challenging to analyze and leverage for descriptive and predictive modeling tasks. In this work, we propose a general framework for temporal network sampling with unbiased estimation. We develop online, single-pass sampling algorithms and unbiased estimators for temporal network sampling. The proposed algorithms enable fast, accurate, and memory-efficient statistical estimation of temporal network patterns and properties. In addition, we propose a temporally decaying sampling algorithm with unbiased estimators for studying networks that evolve in continuous time, where the strength of links is a function of time, and the motif patterns are temporally-weighted. In contrast to the prior notion of a $\bigtriangleup t$-temporal motif, the proposed formulation and algorithms for counting temporally weighted motifs are useful for forecasting tasks in networks such as predicting future links, or a future time-series variable of nodes and links. Finally, extensive experiments on a variety of temporal networks from different domains demonstrate the effectiveness of the proposed algorithms.
Variational Graph Recurrent Neural Networks
Hajiramezanali, Ehsan, Hasanzadeh, Arman, Duffield, Nick, Narayanan, Krishna R, Zhou, Mingyuan, Qian, Xiaoning
Representation learning over graph structured data has been mostly studied in static graph settings while efforts for modeling dynamic graphs are still scant. In this paper, we develop a novel hierarchical variational model that introduces additional latent random variables to jointly model the hidden states of a graph recurrent neural network (GRNN) to capture both topology and node attribute changes in dynamic graphs. We argue that the use of high-level latent random variables in this variational GRNN (VGRNN) can better capture potential variability observed in dynamic graphs as well as the uncertainty of node latent representation. With semi-implicit variational inference developed for this new VGRNN architecture (SI-VGRNN), we show that flexible non-Gaussian latent representations can further help dynamic graph analytic tasks. Our experiments with multiple real-world dynamic graph datasets demonstrate that SI-VGRNN and VGRNN consistently outperform the existing baseline and state-of-the-art methods by a significant margin in dynamic link prediction.
Semi-Implicit Graph Variational Auto-Encoders
Hasanzadeh, Arman, Hajiramezanali, Ehsan, Duffield, Nick, Narayanan, Krishna R., Zhou, Mingyuan, Qian, Xiaoning
Semi-implicit graph variational auto-encoder (SIG-VAE) is proposed to expand the flexibility of variational graph auto-encoders (VGAE) to model graph data. SIG-VAE employs a hierarchical variational framework to enable neighboring node sharing for better generative modeling of graph dependency structure, together with a Bernoulli-Poisson link decoder. Not only does this hierarchical construction provide a more flexible generative graph model to better capture real-world graph properties, but also does SIG-VAE naturally lead to semi-implicit hierarchical variational inference that allows faithful modeling of implicit posteriors of given graph data, which may exhibit heavy tails, multiple modes, skewness, and rich dependency structures. Compared to VGAE, the derived graph latent representations by SIG-VAE are more interpretable, due to more expressive generative model and more faithful inference enabled by the flexible semi-implicit construction. Extensive experiments with a variety of graph data show that SIG-VAE significantly outperforms state-of-the-art methods on several different graph analytic tasks.
Network Shrinkage Estimation
Ahmed, Nesreen K., Duffield, Nick
Networks are a natural representation of complex systems across the sciences, and higher-order dependencies are central to the understanding and modeling of these systems. However, in many practical applications such as online social networks, networks are massive, dynamic, and naturally streaming, where pairwise interactions become available one at a time in some arbitrary order. The massive size and streaming nature of these networks allow only partial observation, since it is infeasible to analyze the entire network. Under such scenarios, it is challenging to study the higher-order structural and connectivity patterns of streaming networks. In this work, we consider the fundamental problem of estimating the higher-order dependencies using adaptive sampling. We propose a novel adaptive, single-pass sampling framework and unbiased estimators for higher-order network analysis of large streaming networks. Our algorithms exploit adaptive techniques to identify edges that are highly informative for efficiently estimating the higher-order structure of streaming networks from small sample data. We also introduce a novel James-Stein-type shrinkage estimator to minimize the estimation error. Our approach is fully analytic with theoretical guarantees, computationally efficient, and can be incrementally updated in a streaming setting. Numerical experiments on large networks show that our approach is superior to baseline methods.
Micro- and Macro-Level Churn Analysis of Large-Scale Mobile Games
Liu, Xi, Xie, Muhe, Wen, Xidao, Chen, Rui, Ge, Yong, Duffield, Nick, Wang, Na
As mobile devices become more and more popular, mobile gaming has emerged as a promising market with billion-dollar revenues. A variety of mobile game platforms and services have been developed around the world. A critical challenge for these platforms and services is to understand the churn behavior in mobile games, which usually involves churn at micro level (between an app and a specific user) and macro level (between an app and all its users). Accurate micro-level churn prediction and macro-level churn ranking will benefit many stakeholders such as game developers, advertisers, and platform operators. In this paper, we present the first large-scale churn analysis for mobile games that supports both micro-level churn prediction and macro-level churn ranking. For micro-level churn prediction, in view of the common limitations of the state-of-the-art methods built upon traditional machine learning models, we devise a novel semi-supervised and inductive embedding model that jointly learns the prediction function and the embedding function for user-app relationships. We model these two functions by deep neural networks with a unique edge embedding technique that is able to capture both contextual information and relationship dynamics. We also design a novel attributed random walk technique that takes into consideration both topological adjacency and attribute similarities. To address macro-level churn ranking, we propose to construct a relationship graph with estimated micro-level churn probabilities as edge weights and adapt link analysis algorithms on the graph. We devise a simple algorithm SimSum and adapt two more advanced algorithms PageRank and HITS. The performance of our solutions for the two-level churn analysis problems is evaluated on real-world data collected from the Samsung Game Launcher platform.
Streaming Network Embedding through Local Actions
Liu, Xi, Hsieh, Ping-Chun, Duffield, Nick, Chen, Rui, Xie, Muhe, Wen, Xidao
Recently, considerable research attention has been paid to network embedding, a popular approach to construct feature vectors of vertices. Due to the curse of dimensionality and sparsity in graphical datasets, this approach has become indispensable for machine learning tasks over large networks. The majority of existing literature has considered this technique under the assumption that the network is static. However, networks in many applications, nodes and edges accrue to a growing network as a streaming. A small number of very recent results have addressed the problem of embedding for dynamic networks. However, they either rely on knowledge of vertex attributes, suffer high-time complexity or need to be re-trained without closed-form expression. Thus the approach of adapting the existing methods to the streaming environment faces non-trivial technical challenges. These challenges motivate developing new approaches to the problems of streaming network embedding. In this paper, We propose a new framework that is able to generate latent features for new vertices with high efficiency and low complexity under specified iteration rounds. We formulate a constrained optimization problem for the modification of the representation resulting from a stream arrival. We show this problem has no closed-form solution and instead develop an online approximation solution. Our solution follows three steps: (1) identify vertices affected by new vertices, (2) generate latent features for new vertices, and (3) update the latent features of the most affected vertices. The generated representations are provably feasible and not far from the optimal ones in terms of expectation. Multi-class classification and clustering on five real-world networks demonstrate that our model can efficiently update vertex representations and simultaneously achieve comparable or even better performance.
A Semi-Supervised and Inductive Embedding Model for Churn Prediction of Large-Scale Mobile Games
Liu, Xi, Xie, Muhe, Wen, Xidao, Chen, Rui, Ge, Yong, Duffield, Nick, Wang, Na
Mobile gaming has emerged as a promising market with billion-dollar revenues. A variety of mobile game platforms and services have been developed around the world. One critical challenge for these platforms and services is to understand user churn behavior in mobile games. Accurate churn prediction will benefit many stakeholders such as game developers, advertisers, and platform operators. In this paper, we present the first large-scale churn prediction solution for mobile games. In view of the common limitations of the state-of-the-art methods built upon traditional machine learning models, we devise a novel semi-supervised and inductive embedding model that jointly learns the prediction function and the embedding function for user-app relationships. We model these two functions by deep neural networks with a unique edge embedding technique that is able to capture both contextual information and relationship dynamics. We also design a novel attributed random walk technique that takes into consideration both topological adjacency and attribute similarities. To evaluate the performance of our solution, we collect real-world data from the Samsung Game Launcher platform that includes tens of thousands of games and hundreds of millions of user-app interactions. The experimental results with this data demonstrate the superiority of our proposed model against existing state-of-the-art methods.
Graphlet Decomposition: Framework, Algorithms, and Applications
Ahmed, Nesreen K., Neville, Jennifer, Rossi, Ryan A., Duffield, Nick, Willke, Theodore L.
From social science to biology, numerous applications often rely on graphlets for intuitive and meaningful characterization of networks at both the global macro-level as well as the local micro-level. While graphlets have witnessed a tremendous success and impact in a variety of domains, there has yet to be a fast and efficient approach for computing the frequencies of these subgraph patterns. However, existing methods are not scalable to large networks with millions of nodes and edges, which impedes the application of graphlets to new problems that require large-scale network analysis. To address these problems, we propose a fast, efficient, and parallel algorithm for counting graphlets of size k={3,4}-nodes that take only a fraction of the time to compute when compared with the current methods used. The proposed graphlet counting algorithms leverages a number of proven combinatorial arguments for different graphlets. For each edge, we count a few graphlets, and with these counts along with the combinatorial arguments, we obtain the exact counts of others in constant time. On a large collection of 300+ networks from a variety of domains, our graphlet counting strategies are on average 460x faster than current methods. This brings new opportunities to investigate the use of graphlets on much larger networks and newer applications as we show in the experiments. To the best of our knowledge, this paper provides the largest graphlet computations to date as well as the largest systematic investigation on over 300+ networks from a variety of domains.