Du, Wan
Exploring Deep Reinforcement Learning for Holistic Smart Building Control
Ding, Xianzhong, Cerpa, Alberto, Du, Wan
In this paper, we take a holistic approach to deal with the tradeoffs between energy use and comfort in commercial buildings. We developed a system called OCTOPUS, which employs a novel deep reinforcement learning (DRL) framework that uses a data-driven approach to find the optimal control sequences of all building's subsystems, including HVAC, lighting, blind and window systems. The DRL architecture includes a novel reward function that allows the framework to explore the tradeoffs between energy use and users' comfort, while at the same time enabling the solution of the high-dimensional control problem due to the interactions of four different building subsystems. In order to cope with OCTOPUS's data training requirements, we argue that calibrated simulations that match the target building operational points are the vehicle to generate enough data to be able to train our DRL framework to find the control solution for the target building. In our work, we trained OCTOPUS with 10-year weather data and a building model that is implemented in the EnergyPlus building simulator, which was calibrated using data from a real production building. Through extensive simulations, we demonstrate that OCTOPUS can achieve 14.26% and 8.1% energy savings compared with the state-of-the-art rule-based method in a LEED Gold Certified building and the latest DRL-based method available in the literature respectively, while maintaining human comfort within a desired range.
Performance Analysis and Characterization of Training Deep Learning Models on NVIDIA TX2
Liu, Jie, Liu, Jiawen, Du, Wan, Li, Dong
Training deep learning models on mobile devices recently becomes possible, because of increasing computation power on mobile hardware and the advantages of enabling high user experiences. Most of the existing work on machine learning at mobile devices is focused on the inference of deep learning models (particularly convolutional neural network and recurrent neural network), but not training. The performance characterization of training deep learning models on mobile devices is largely unexplored, although understanding the performance characterization is critical for designing and implementing deep learning models on mobile devices. In this paper, we perform a variety of experiments on a representative mobile device (the NVIDIA TX2) to study the performance of training deep learning models. We introduce a benchmark suite and tools to study performance of training deep learning models on mobile devices, from the perspectives of memory consumption, hardware utilization, and power consumption. The tools can correlate performance results with fine-grained operations in deep learning models, providing capabilities to capture performance variance and problems at a fine granularity. We reveal interesting performance problems and opportunities, including under-utilization of heterogeneous hardware, large energy consumption of the memory, and high predictability of workload characterization. Based on the performance analysis, we suggest interesting research directions.