Not enough data to create a plot.
Try a different view from the menu above.
Du, Chenpeng
Recent Advances in Discrete Speech Tokens: A Review
Guo, Yiwei, Li, Zhihan, Wang, Hankun, Li, Bohan, Shao, Chongtian, Zhang, Hanglei, Du, Chenpeng, Chen, Xie, Liu, Shujie, Yu, Kai
The rapid advancement of speech generation technologies in the era of large language models (LLMs) has established discrete speech tokens as a foundational paradigm for speech representation. These tokens, characterized by their discrete, compact, and concise nature, are not only advantageous for efficient transmission and storage, but also inherently compatible with the language modeling framework, enabling seamless integration of speech into text-dominated LLM architectures. Current research categorizes discrete speech tokens into two principal classes: acoustic tokens and semantic tokens, each of which has evolved into a rich research domain characterized by unique design philosophies and methodological approaches. This survey systematically synthesizes the existing taxonomy and recent innovations in discrete speech tokenization, conducts a critical examination of the strengths and limitations of each paradigm, and presents systematic experimental comparisons across token types. Furthermore, we identify persistent challenges in the field and propose potential research directions, aiming to offer actionable insights to inspire future advancements in the development and application of discrete speech tokens.
DiTAR: Diffusion Transformer Autoregressive Modeling for Speech Generation
Jia, Dongya, Chen, Zhuo, Chen, Jiawei, Du, Chenpeng, Wu, Jian, Cong, Jian, Zhuang, Xiaobin, Li, Chumin, Wei, Zhen, Wang, Yuping, Wang, Yuxuan
Several recent studies have attempted to autoregressively generate continuous speech representations without discrete speech tokens by combining diffusion and autoregressive models, yet they often face challenges with excessive computational loads or suboptimal outcomes. In this work, we propose Diffusion Transformer Autoregressive Modeling (DiTAR), a patch-based autoregressive framework combining a language model with a diffusion transformer. This approach significantly enhances the efficacy of autoregressive models for continuous tokens and reduces computational demands. DiTAR utilizes a divide-and-conquer strategy for patch generation, where the language model processes aggregated patch embeddings and the diffusion transformer subsequently generates the next patch based on the output of the language model. For inference, we propose defining temperature as the time point of introducing noise during the reverse diffusion ODE to balance diversity and determinism. We also show in the extensive scaling analysis that DiTAR has superb scalability. In zero-shot speech generation, DiTAR achieves state-of-the-art performance in robustness, speaker similarity, and naturalness.
Why Do Speech Language Models Fail to Generate Semantically Coherent Outputs? A Modality Evolving Perspective
Wang, Hankun, Wang, Haoran, Guo, Yiwei, Li, Zhihan, Du, Chenpeng, Chen, Xie, Yu, Kai
Although text-based large language models exhibit human-level writing ability and remarkable intelligence, speech language models (SLMs) still struggle to generate semantically coherent outputs. There are several potential reasons for this performance degradation: (A) speech tokens mainly provide phonetic information rather than semantic information, (B) the length of speech sequences is much longer than that of text sequences, and (C) paralinguistic information, such as prosody, introduces additional complexity and variability. In this paper, we explore the influence of three key factors separately by transiting the modality from text to speech in an evolving manner. Our findings reveal that the impact of the three factors varies. Factor A has a relatively minor impact, factor B influences syntactical and semantic modeling more obviously, and factor C exerts the most significant impact, particularly in the basic lexical modeling. Based on these findings, we provide insights into the unique challenges of training SLMs and highlight pathways to develop more effective end-to-end SLMs.
LSCodec: Low-Bitrate and Speaker-Decoupled Discrete Speech Codec
Guo, Yiwei, Li, Zhihan, Du, Chenpeng, Wang, Hankun, Chen, Xie, Yu, Kai
Although discrete speech tokens have exhibited strong potential for language model-based speech generation, their high bitrates and redundant timbre information restrict the development of such models. In this work, we propose LSCodec, a discrete speech codec that has both low bitrate and speaker decoupling ability. LSCodec adopts a three-stage unsupervised training framework with a speaker perturbation technique. A continuous information bottleneck is first established, followed by vector quantization that produces a discrete speaker-decoupled space. A discrete token vocoder finally refines acoustic details from LSCodec. By reconstruction experiments, LSCodec demonstrates superior intelligibility and audio quality with only a single codebook and smaller vocabulary size than baselines. The 25Hz version of LSCodec also achieves the lowest bitrate (0.25kbps) of codecs so far with decent quality. Voice conversion evaluations prove the satisfactory speaker disentanglement of LSCodec, and ablation study further verifies the effectiveness of the proposed training framework.
Data Augmentation for End-to-end Code-switching Speech Recognition
Du, Chenpeng, Li, Hao, Lu, Yizhou, Wang, Lan, Qian, Yanmin
Training a code-switching end-to-end automatic speech recognition (ASR) model normally requires a large amount of data, while code-switching data is often limited. In this paper, three novel approaches are proposed for code-switching data augmentation. Specifically, they are audio splicing with the existing code-switching data, and TTS with new code-switching texts generated by word translation or word insertion. Our experiments on 200 hours Mandarin-English code-switching dataset show that all the three proposed approaches yield significant improvements on code-switching ASR individually. Moreover, all the proposed approaches can be combined with recent popular SpecAugment, and an addition gain can be obtained. WER is significantly reduced by relative 24.0% compared to the system without any data augmentation, and still relative 13.0% gain compared to the system with only SpecAugment
AniTalker: Animate Vivid and Diverse Talking Faces through Identity-Decoupled Facial Motion Encoding
Liu, Tao, Chen, Feilong, Fan, Shuai, Du, Chenpeng, Chen, Qi, Chen, Xie, Yu, Kai
The paper introduces AniTalker, an innovative framework designed to generate lifelike talking faces from a single portrait. Unlike existing models that primarily focus on verbal cues such as lip synchronization and fail to capture the complex dynamics of facial expressions and nonverbal cues, AniTalker employs a universal motion representation. This innovative representation effectively captures a wide range of facial dynamics, including subtle expressions and head movements. AniTalker enhances motion depiction through two self-supervised learning strategies: the first involves reconstructing target video frames from source frames within the same identity to learn subtle motion representations, and the second develops an identity encoder using metric learning while actively minimizing mutual information between the identity and motion encoders. This approach ensures that the motion representation is dynamic and devoid of identity-specific details, significantly reducing the need for labeled data. Additionally, the integration of a diffusion model with a variance adapter allows for the generation of diverse and controllable facial animations. This method not only demonstrates AniTalker's capability to create detailed and realistic facial movements but also underscores its potential in crafting dynamic avatars for real-world applications. Synthetic results can be viewed at https://github.com/X-LANCE/AniTalker.
The X-LANCE Technical Report for Interspeech 2024 Speech Processing Using Discrete Speech Unit Challenge
Guo, Yiwei, Wang, Chenrun, Yang, Yifan, Wang, Hankun, Ma, Ziyang, Du, Chenpeng, Wang, Shuai, Li, Hanzheng, Fan, Shuai, Zhang, Hui, Chen, Xie, Yu, Kai
Discrete speech tokens have been more and more popular in multiple speech processing fields, including automatic speech recognition (ASR), text-to-speech (TTS) and singing voice synthesis (SVS). In this paper, we describe the systems developed by the SJTU X-LANCE group for the TTS (acoustic + vocoder), SVS, and ASR tracks in the Interspeech 2024 Speech Processing Using Discrete Speech Unit Challenge. Notably, we achieved 1st rank on the leaderboard in the TTS track both with the whole training set and only 1h training data, with the highest UTMOS score and lowest bitrate among all submissions.
VoiceFlow: Efficient Text-to-Speech with Rectified Flow Matching
Guo, Yiwei, Du, Chenpeng, Ma, Ziyang, Chen, Xie, Yu, Kai
Although diffusion models in text-to-speech have become a popular choice due to their strong generative ability, the intrinsic complexity of sampling from diffusion models harms their efficiency. Alternatively, we propose VoiceFlow, an acoustic model that utilizes a rectified flow matching algorithm to achieve high synthesis quality with a limited number of sampling steps. VoiceFlow formulates the process of generating mel-spectrograms into an ordinary differential equation conditional on text inputs, whose vector field is then estimated. The rectified flow technique then effectively straightens its sampling trajectory for efficient synthesis. Subjective and objective evaluations on both single and multi-speaker corpora showed the superior synthesis quality of VoiceFlow compared to the diffusion counterpart. Ablation studies further verified the validity of the rectified flow technique in VoiceFlow.
DiffDub: Person-generic Visual Dubbing Using Inpainting Renderer with Diffusion Auto-encoder
Liu, Tao, Du, Chenpeng, Fan, Shuai, Chen, Feilong, Yu, Kai
Generating high-quality and person-generic visual dubbing remains a challenge. Recent innovation has seen the advent of a two-stage paradigm, decoupling the rendering and lip synchronization process facilitated by intermediate representation as a conduit. Still, previous methodologies rely on rough landmarks or are confined to a single speaker, thus limiting their performance. In this paper, we propose DiffDub: Diffusion-based dubbing. We first craft the Diffusion auto-encoder by an inpainting renderer incorporating a mask to delineate editable zones and unaltered regions. This allows for seamless filling of the lower-face region while preserving the remaining parts. Throughout our experiments, we encountered several challenges. Primarily, the semantic encoder lacks robustness, constricting its ability to capture high-level features. Besides, the modeling ignored facial positioning, causing mouth or nose jitters across frames. To tackle these issues, we employ versatile strategies, including data augmentation and supplementary eye guidance. Moreover, we encapsulated a conformer-based reference encoder and motion generator fortified by a cross-attention mechanism. This enables our model to learn person-specific textures with varying references and reduces reliance on paired audio-visual data. Our rigorous experiments comprehensively highlight that our ground-breaking approach outpaces existing methods with considerable margins and delivers seamless, intelligible videos in person-generic and multilingual scenarios.
DSE-TTS: Dual Speaker Embedding for Cross-Lingual Text-to-Speech
Liu, Sen, Guo, Yiwei, Du, Chenpeng, Chen, Xie, Yu, Kai
Although high-fidelity speech can be obtained for intralingual speech synthesis, cross-lingual text-to-speech (CTTS) is still far from satisfactory as it is difficult to accurately retain the speaker timbres(i.e. speaker similarity) and eliminate the accents from their first language(i.e. nativeness). In this paper, we demonstrated that vector-quantized(VQ) acoustic feature contains less speaker information than mel-spectrogram. Based on this finding, we propose a novel dual speaker embedding TTS (DSE-TTS) framework for CTTS with authentic speaking style. Here, one embedding is fed to the acoustic model to learn the linguistic speaking style, while the other one is integrated into the vocoder to mimic the target speaker's timbre. Experiments show that by combining both embeddings, DSE-TTS significantly outperforms the state-of-the-art SANE-TTS in cross-lingual synthesis, especially in terms of nativeness.