Downey, Doug
"It doesn't look good for a date": Transforming Critiques into Preferences for Conversational Recommendation Systems
Bursztyn, Victor S., Healey, Jennifer, Lipka, Nedim, Koh, Eunyee, Downey, Doug, Birnbaum, Larry
Conversations aimed at determining good recommendations are iterative in nature. People often express their preferences in terms of a critique of the current recommendation (e.g., "It doesn't look good for a date"), requiring some degree of common sense for a preference to be inferred. In this work, we present a method for transforming a user critique into a positive preference (e.g., "I prefer more romantic") in order to retrieve reviews pertaining to potentially better recommendations (e.g., "Perfect for a romantic dinner"). We leverage a large neural language model (LM) in a few-shot setting to perform critique-to-preference transformation, and we test two methods for retrieving recommendations: one that matches embeddings, and another that fine-tunes an LM for the task. We instantiate this approach in the restaurant domain and evaluate it using a new dataset of restaurant critiques. In an ablation study, we show that utilizing critique-to-preference transformation improves recommendations, and that there are at least three general cases that explain this improved performance.
Stolen Probability: A Structural Weakness of Neural Language Models
Demeter, David, Kimmel, Gregory, Downey, Doug
Neural Network Language Models (NNLMs) generate probability distributions by applying a softmax function to a distance metric formed by taking the dot product of a prediction vector with all word vectors in a high-dimensional embedding space. The dot-product distance metric forms part of the inductive bias of NNLMs. Although NNLMs optimize well with this inductive bias, we show that this results in a sub-optimal ordering of the embedding space that structurally impoverishes some words at the expense of others when assigning probability. We present numerical, theoretical and empirical analyses showing that words on the interior of the convex hull in the embedding space have their probability bounded by the probabilities of the words on the hull.
Just Add Functions: A Neural-Symbolic Language Model
Demeter, David, Downey, Doug
Neural network language models (NNLMs) have achieved ever-improving accuracy due to more sophisticated architectures and increasing amounts of training data. However, the inductive bias of these models (formed by the distributional hypothesis of language), while ideally suited to modeling most running text, results in key limitations for today's models. In particular, the models often struggle to learn certain spatial, temporal, or quantitative relationships, which are commonplace in text and are second-nature for human readers. Yet, in many cases, these relationships can be encoded with simple mathematical or logical expressions. How can we augment today's neural models with such encodings? In this paper, we propose a general methodology to enhance the inductive bias of NNLMs by incorporating simple functions into a neural architecture to form a hierarchical neural-symbolic language model (NSLM). These functions explicitly encode symbolic deterministic relationships to form probability distributions over words. We explore the effectiveness of this approach on numbers and geographic locations, and show that NSLMs significantly reduce perplexity in small-corpus language modeling, and that the performance improvement persists for rare tokens even on much larger corpora. The approach is simple and general, and we discuss how it can be applied to other word classes beyond numbers and geography.
OTyper: A Neural Architecture for Open Named Entity Typing
Yuan, Zheng (Northwestern University) | Downey, Doug (Northwestern University)
Named Entity Typing (NET) is valuable for many natural language processing tasks, such as relation extraction, question answering, knowledge base population, and co-reference resolution. Classical NET targeted a few coarse-grained types, but the task has expanded to sets of hundreds of types in recent years. Existing work in NET assumes that the target types are specified in advance, and that hand-labeled examples of each type are available. In this work, we introduce the task of Open Named Entity Typing (ONET), which is NET when the set of target types is not known in advance. We propose a neural network architecture for ONET, called OTyper, and evaluate its ability to tag entities with types not seen in training. On the benchmark FIGER(GOLD) dataset, OTyper achieves a weighted AUC-ROC score of 0.870 on unseen types, substantially outperforming pattern- and embedding-based baselines.
Controlling Global Statistics in Recurrent Neural Network Text Generation
Noraset, Thanapon (Northwestern University) | Demeter, David (Northwestern University) | Downey, Doug (Northwestern University)
Recurrent neural network language models (RNNLMs) are an essential component for many language generation tasks such as machine translation, summarization, and automated conversation. Often, we would like to subject the text generated by the RNNLM to constraints, in order to overcome systemic errors (e.g. word repetition) or achieve application-specific goals (e.g. more positive sentiment). In this paper, we present a method for training RNNLMs to simultaneously optimize likelihood and follow a given set of statistical constraints on text generation.ย The problem is challenging because the statistical constraints are defined over aggregate model behavior, rather than model parameters, meaning that a straightforward parameter regularization approach is insufficient.ย We solve this problem using a dynamic regularizer that updates as training proceeds, based on the generative behavior of the RNNLMs.ย Our experiments show that the dynamic regularizer outperforms both generic training and a static regularization baseline.ย The approach is successful at improving word-level repetition statistics by a factor of four in RNNLMs on a definition modeling task.ย It also improves model perplexity when the statistical constraints are $n$-gram statistics taken from a large corpus.
Definition Modeling: Learning to Define Word Embeddings in Natural Language
Noraset, Thanapon (Northwestern University) | Liang, Chen (Northwestern University) | Birnbaum, Larry (Northwestern University) | Downey, Doug (Northwestern University)
Distributed representations of words have been shown to capture lexical semantics, based on their effectiveness in word similarity and analogical relation tasks. But, these tasks only evaluate lexical semantics indirectly. In this paper, we study whether it is possible to utilize distributed representations to generate dictionary definitions of words, as a more direct and transparent representation of the embeddings' semantics. We introduce definition modeling, the task of generating a definition for a given word and its embedding. We present different definition model architectures based on recurrent neural networks, and experiment with the models over multiple data sets. Our results show that a model that controls dependencies between the word being defined and the definition words performs significantly better, and that a character-level convolution layer that leverages morphology can complement word-level embeddings. Our analysis reveals which components of our models contribute to accuracy. Finally, the errors made by a definition model may provide insight into the shortcomings of word embeddings.
PAG2ADMG: A Novel Methodology to Enumerate Causal Graph Structures
Subramani, Nishant (Northwestern University) | Downey, Doug (Northwestern University)
Causal graphs, such as directed acyclic graphs (DAGs) and partial ancestral graphs (PAGs), represent causal relationships among variables in a model. Methods exist for learning DAGs and PAGs from data and for converting DAGs to PAGs. However, these methods only output a single causal graph consistent with the independencies/dependencies (the Markov equivalence class M) estimated from the data. However, many distinct graphs may be consistent with M, and a data modeler may wish to select among these using domain knowledge. In this paper, we present a method that makes this possible. We introduce PAG2ADMG, the first method for enumerating all causal graphs consistent with M, under certain assumptions. PAG2ADMG converts a given PAG into a set of acyclic directed mixed graphs (ADMGs). We prove the correctness of the approach and demonstrate its efficiency relative to brute-force enumeration.