Plotting

 Donti, Priya L.


RL2Grid: Benchmarking Reinforcement Learning in Power Grid Operations

arXiv.org Artificial Intelligence

Reinforcement learning (RL) can transform power grid operations by providing adaptive and scalable controllers essential for grid decarbonization. However, existing methods struggle with the complex dynamics, aleatoric uncertainty, long-horizon goals, and hard physical constraints that occur in real-world systems. This paper presents RL2Grid, a benchmark designed in collaboration with power system operators to accelerate progress in grid control and foster RL maturity. Built on a power simulation framework developed by RTE France, RL2Grid standardizes tasks, state and action spaces, and reward structures within a unified interface for a systematic evaluation and comparison of RL approaches. Moreover, we integrate real control heuristics and safety constraints informed by the operators' expertise to ensure RL2Grid aligns with grid operation requirements. We benchmark popular RL baselines on the grid control tasks represented within RL2Grid, establishing reference performance metrics. Our results and discussion highlight the challenges that power grids pose for RL methods, emphasizing the need for novel algorithms capable of handling real-world physical systems.


Defining 'Good': Evaluation Framework for Synthetic Smart Meter Data

arXiv.org Artificial Intelligence

Access to granular demand data is essential for the net zero transition; it allows for accurate profiling and active demand management as our reliance on variable renewable generation increases. However, public release of this data is often impossible due to privacy concerns. Good quality synthetic data can circumnavigate this issue. Despite significant research on generating synthetic smart meter data, there is still insufficient work on creating a consistent evaluation framework. In this paper, we investigate how common frameworks used by other industries leveraging synthetic data, can be applied to synthetic smart meter data, such as fidelity, utility and privacy. We also recommend specific metrics to ensure that defining aspects of smart meter data are preserved and test the extent to which privacy can be protected using differential privacy. We show that standard privacy attack methods like reconstruction or membership inference attacks are inadequate for assessing privacy risks of smart meter datasets. We propose an improved method by injecting training data with implausible outliers, then launching privacy attacks directly on these outliers. The choice of $\epsilon$ (a metric of privacy loss) significantly impacts privacy risk, highlighting the necessity of performing these explicit privacy tests when making trade-offs between fidelity and privacy.


Application-Driven Innovation in Machine Learning

arXiv.org Artificial Intelligence

As applications of machine learning proliferate, innovative algorithms inspired by specific real-world challenges have become increasingly important. Such work offers the potential for significant impact not merely in domains of application but also in machine learning itself. In this paper, we describe the paradigm of application-driven research in machine learning, contrasting it with the more standard paradigm of methods-driven research. We illustrate the benefits of application-driven machine learning and how this approach can productively synergize with methods-driven work. Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation. We outline how these processes may be improved.


Proceedings of AAAI 2022 Fall Symposium: The Role of AI in Responding to Climate Challenges

arXiv.org Artificial Intelligence

Climate change is one of the most pressing challenges of our time, requiring rapid action across society. As artificial intelligence tools (AI) are rapidly deployed, it is therefore crucial to understand how they will impact climate action. On the one hand, AI can support applications in climate change mitigation (reducing or preventing greenhouse gas emissions), adaptation (preparing for the effects of a changing climate), and climate science. These applications have implications in areas ranging as widely as energy, agriculture, and finance. At the same time, AI is used in many ways that hinder climate action (e.g., by accelerating the use of greenhouse gas-emitting fossil fuels). In addition, AI technologies have a carbon and energy footprint themselves. This symposium brought together participants from across academia, industry, government, and civil society to explore these intersections of AI with climate change, as well as how each of these sectors can contribute to solutions.


DC3: A learning method for optimization with hard constraints

arXiv.org Machine Learning

Large optimization problems with hard constraints arise in many settings, yet classical solvers are often prohibitively slow, motivating the use of deep networks as cheap "approximate solvers." Unfortunately, naive deep learning approaches typically cannot enforce the hard constraints of such problems, leading to infeasible solutions. In this work, we present Deep Constraint Completion and Correction (DC3), an algorithm to address this challenge. Specifically, this method enforces feasibility via a differentiable procedure, which implicitly completes partial solutions to satisfy equality constraints and unrolls gradient-based corrections to satisfy inequality constraints. We demonstrate the effectiveness of DC3 in both synthetic optimization tasks and the real-world setting of AC optimal power flow, where hard constraints encode the physics of the electrical grid. In both cases, DC3 achieves near-optimal objective values while preserving feasibility. Traditional approaches to constrained optimization are often expensive to run for large problems, necessitating the use of function approximators. Neural networks are highly expressive and fast to run, making them ideal as function approximators. However, while deep learning has proven its power for unconstrained problem settings, it has struggled to perform well in domains where it is necessary to satisfy hard constraints at test time. For example, in power systems, weather and climate models, materials science, and many other areas, data follows well-known physical laws, and violation of these laws can lead to answers that are unhelpful or even nonsensical.


Tackling Climate Change with Machine Learning

arXiv.org Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.


SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

arXiv.org Artificial Intelligence

Integrating logical reasoning within deep learning architectures has been a major goal of modern AI systems. In this paper, we propose a new direction toward this goal by introducing a differentiable (smoothed) maximum satisfiability (MAXSAT) solver that can be integrated into the loop of larger deep learning systems. Our (approximate) solver is based upon a fast coordinate descent approach to solving the semidefinite program (SDP) associated with the MAXSAT problem. We show how to analytically differentiate through the solution to this SDP and efficiently solve the associated backward pass. We demonstrate that by integrating this solver into end-to-end learning systems, we can learn the logical structure of challenging problems in a minimally supervised fashion. In particular, we show that we can learn the parity function using single-bit supervision (a traditionally hard task for deep networks) and learn how to play 9x9 Sudoku solely from examples. We also solve a "visual Sudok" problem that maps images of Sudoku puzzles to their associated logical solutions by combining our MAXSAT solver with a traditional convolutional architecture. Our approach thus shows promise in integrating logical structures within deep learning.


Task-based End-to-end Model Learning in Stochastic Optimization

arXiv.org Artificial Intelligence

With the increasing popularity of machine learning techniques, it has become common to see prediction algorithms operating within some larger process. However, the criteria by which we train these algorithms often differ from the ultimate criteria on which we evaluate them. This paper proposes an end-to-end approach for learning probabilistic machine learning models in a manner that directly captures the ultimate task-based objective for which they will be used, within the context of stochastic programming. We present three experimental evaluations of the proposed approach: a classical inventory stock problem, a real-world electrical grid scheduling task, and a real-world energy storage arbitrage task. We show that the proposed approach can outperform both traditional modeling and purely black-box policy optimization approaches in these applications.


Exploring Active and Passive Team-Based Coordination

AAAI Conferences

As human-robot teamwork becomes increasingly common, a key challenge is to fluidly and intuitively coordinate team members' interactions. In this work, we explore two modalities of human-robot coordination: active, where agents intentionally attempt to understand and influence the plans of human teammates, and passive, where agents simply react to their human teammates' varying behavior. In our Productivity and Wellness Pal (PaWPal) project, we seek to develop an agent that actively elicits a teammate's constraints, preferences, and goals in order to nudge them towards better behavior. Conversely, in our Coordinating Human-Robot Teamwork project, we take a distributed approach to scheduling where agents passively adapt to teammates' plan executions. Our research hypothesis is that human-robot coordination Figure 1: Screenshots from our ESM study, conducted using techniques will lead to more natural and effective PACO on Android (http://www.pacoapp.com/).