Plotting

 Dong, Gaofeng


Toward Foundation Models for Online Complex Event Detection in CPS-IoT: A Case Study

arXiv.org Artificial Intelligence

Complex events (CEs) play a crucial role in CPS-IoT applications, enabling high-level decision-making in domains such as smart monitoring and autonomous systems. However, most existing models focus on short-span perception tasks, lacking the long-term reasoning required for CE detection. CEs consist of sequences of short-time atomic events (AEs) governed by spatiotemporal dependencies. Detecting them is difficult due to long, noisy sensor data and the challenge of filtering out irrelevant AEs while capturing meaningful patterns. This work explores CE detection as a case study for CPS-IoT foundation models capable of long-term reasoning. We evaluate three approaches: (1) leveraging large language models (LLMs), (2) employing various neural architectures that learn CE rules from data, and (3) adopting a neurosymbolic approach that integrates neural models with symbolic engines embedding human knowledge. Our results show that the state-space model, Mamba, which belongs to the second category, outperforms all methods in accuracy and generalization to longer, unseen sensor traces. These findings suggest that state-space models could be a strong backbone for CPS-IoT foundation models for long-span reasoning tasks.


NARCE: A Mamba-Based Neural Algorithmic Reasoner Framework for Online Complex Event Detection

arXiv.org Artificial Intelligence

Current machine learning models excel in short-span perception tasks but struggle to derive high-level insights from long-term observation, a capability central to understanding complex events (CEs). CEs, defined as sequences of short-term atomic events (AEs) governed by spatiotemporal rules, are challenging to detect online due to the need to extract meaningful patterns from long and noisy sensor data while ignoring irrelevant events. We hypothesize that state-based methods are well-suited for CE detection, as they capture event progression through state transitions without requiring long-term memory. Baseline experiments validate this, demonstrating that the state-space model Mamba outperforms existing architectures. However, Mamba's reliance on extensive labeled data, which are difficult to obtain, motivates our second hypothesis: decoupling CE rule learning from noisy sensor data can reduce data requirements. To address this, we propose NARCE, a framework that combines Neural Algorithmic Reasoning (NAR) to split the task into two components: (i) learning CE rules independently of sensor data using synthetic concept traces generated by LLMs and (ii) mapping sensor inputs to these rules via an adapter. Our results show that NARCE outperforms baselines in accuracy, generalization to unseen and longer sensor data, and data efficiency, significantly reducing annotation costs while advancing robust CE detection.


Foundation Models for CPS-IoT: Opportunities and Challenges

arXiv.org Artificial Intelligence

Methods from machine learning (ML) have transformed the implementation of Perception-Cognition-Communication-Action loops in Cyber-Physical Systems (CPS) and the Internet of Things (IoT), replacing mechanistic and basic statistical models with those derived from data. However, the first generation of ML approaches, which depend on supervised learning with annotated data to create task-specific models, faces significant limitations in scaling to the diverse sensor modalities, deployment configurations, application tasks, and operating dynamics characterizing real-world CPS-IoT systems. The success of task-agnostic foundation models (FMs), including multimodal large language models (LLMs), in addressing similar challenges across natural language, computer vision, and human speech has generated considerable enthusiasm for and exploration of FMs and LLMs as flexible building blocks in CPS-IoT analytics pipelines, promising to reduce the need for costly task-specific engineering. Nonetheless, a significant gap persists between the current capabilities of FMs and LLMs in the CPS-IoT domain and the requirements they must meet to be viable for CPS-IoT applications. In this paper, we analyze and characterize this gap through a thorough examination of the state of the art and our research, which extends beyond it in various dimensions. Based on the results of our analysis and research, we identify essential desiderata that CPS-IoT domain-specific FMs and LLMs must satisfy to bridge this gap. We also propose actions by CPS-IoT researchers to collaborate in developing key community resources necessary for establishing FMs and LLMs as foundational tools for the next generation of CPS-IoT systems.