Dolan-Gavitt, Brendan
Can OpenAI Codex and Other Large Language Models Help Us Fix Security Bugs?
Pearce, Hammond, Tan, Benjamin, Ahmad, Baleegh, Karri, Ramesh, Dolan-Gavitt, Brendan
Human developers can produce code with cybersecurity weaknesses. Can emerging 'smart' code completion tools help repair those weaknesses? In this work, we examine the use of large language models (LLMs) for code (such as OpenAI's Codex and AI21's Jurassic J-1) for zero-shot vulnerability repair. We investigate challenges in the design of prompts that coax LLMs into generating repaired versions of insecure code. This is difficult due to the numerous ways to phrase key information -- both semantically and syntactically -- with natural languages. By performing a large scale study of four commercially available, black-box, "off-the-shelf" LLMs, as well as a locally-trained model, on a mix of synthetic, hand-crafted, and real-world security bug scenarios, our experiments show that LLMs could collectively repair 100% of our synthetically generated and hand-crafted scenarios, as well as 58% of vulnerabilities in a selection of historical bugs in real-world open-source projects.
An Empirical Cybersecurity Evaluation of GitHub Copilot's Code Contributions
Pearce, Hammond, Ahmad, Baleegh, Tan, Benjamin, Dolan-Gavitt, Brendan, Karri, Ramesh
There is burgeoning interest in designing AI-based systems to assist humans in designing computing systems, including tools that automatically generate computer code. The most notable of these comes in the form of the first self-described `AI pair programmer', GitHub Copilot, a language model trained over open-source GitHub code. However, code often contains bugs - and so, given the vast quantity of unvetted code that Copilot has processed, it is certain that the language model will have learned from exploitable, buggy code. This raises concerns on the security of Copilot's code contributions. In this work, we systematically investigate the prevalence and conditions that can cause GitHub Copilot to recommend insecure code. To perform this analysis we prompt Copilot to generate code in scenarios relevant to high-risk CWEs (e.g. those from MITRE's "Top 25" list). We explore Copilot's performance on three distinct code generation axes -- examining how it performs given diversity of weaknesses, diversity of prompts, and diversity of domains. In total, we produce 89 different scenarios for Copilot to complete, producing 1,692 programs. Of these, we found approximately 40% to be vulnerable.