Ding, Zhiming
Rethink DARTS Search Space and Renovate a New Benchmark
Zhang, Jiuling, Ding, Zhiming
DARTS search space (DSS) has become a canonical benchmark for NAS whereas some emerging works pointed out the issue of narrow accuracy range and claimed it would hurt the method ranking. We observe some recent studies already suffer from this issue that overshadows the meaning of scores. In this work, we first propose and orchestrate a suite of improvements to frame a larger and harder DSS, termed LHD, while retaining high efficiency in search. We step forward to renovate a LHD-based new benchmark, taking care of both discernibility and accessibility. Specifically, we re-implement twelve baselines and evaluate them across twelve conditions by combining two underexpolored influential factors: transductive robustness and discretization policy, to reasonably construct a benchmark upon multi-condition evaluation. Considering that the tabular benchmarks are always insufficient to adequately evaluate the methods of neural architecture search (NAS), our work can serve as a crucial basis for the future progress of NAS. https://github.com/chaoji90/LHD
Leveraging LLMs for KPIs Retrieval from Hybrid Long-Document: A Comprehensive Framework and Dataset
Yue, Chongjian, Xu, Xinrun, Ma, Xiaojun, Du, Lun, Liu, Hengyu, Ding, Zhiming, Jiang, Yanbing, Han, Shi, Zhang, Dongmei
Large Language Models (LLMs) demonstrate exceptional performance in textual understanding and tabular reasoning tasks. However, their ability to comprehend and analyze hybrid text, containing textual and tabular data, remains underexplored. In this research, we specialize in harnessing the potential of LLMs to comprehend critical information from financial reports, which are hybrid long-documents. We propose an Automated Financial Information Extraction (AFIE) framework that enhances LLMs' ability to comprehend and extract information from financial reports. To evaluate AFIE, we develop a Financial Reports Numerical Extraction (FINE) dataset and conduct an extensive experimental analysis. Our framework is effectively validated on GPT-3.5 and GPT-4, yielding average accuracy increases of 53.94% and 33.77%, respectively, compared to a naive method. These results suggest that the AFIE framework offers accuracy for automated numerical extraction from complex, hybrid documents.
Delve into the Performance Degradation of Differentiable Architecture Search
Zhang, Jiuling, Ding, Zhiming
Differentiable architecture search (DARTS) is widely considered to be easy to overfit the validation set which leads to performance degradation. We first employ a series of exploratory experiments to verify that neither high-strength architecture parameters regularization nor warmup training scheme can effectively solve this problem. Based on the insights from the experiments, we conjecture that the performance of DARTS does not depend on the well-trained supernet weights and argue that the architecture parameters should be trained by the gradients which are obtained in the early stage rather than the final stage of training. This argument is then verified by exchanging the learning rate schemes of weights and parameters. Experimental results show that the simple swap of the learning rates can effectively solve the degradation and achieve competitive performance. Further empirical evidence suggests that the degradation is not a simple problem of the validation set overfitting but exhibit some links between the degradation and the operation selection bias within bilevel optimization dynamics. We demonstrate the generalization of this bias and propose to utilize this bias to achieve an operation-magnitude-based selective stop.