Goto

Collaborating Authors

 Ding, Yi


Evaluating Reinforcement Learning Algorithms in Observational Health Settings

arXiv.org Machine Learning

Much attention has been devoted recently to the development of machine learning algorithms with the goal of improving treatment policies in healthcare. Reinforcement learning (RL) is a sub-field within machine learning that is concerned with learning how to make sequences of decisions so as to optimize long-term effects. Already, RL algorithms have been proposed to identify decision-making strategies for mechanical ventilation, sepsis management and treatment of schizophrenia. However, before implementing treatment policies learned by black-box algorithms in high-stakes clinical decision problems, special care must be taken in the evaluation of these policies. In this document, our goal is to expose some of the subtleties associated with evaluating RL algorithms in healthcare. We aim to provide a conceptual starting point for clinical and computational researchers to ask the right questions when designing and evaluating algorithms for new ways of treating patients. In the following, we describe how choices about how to summarize a history, variance of statistical estimators, and confounders in more ad-hoc measures can result in unreliable, even misleading estimates of the quality of a treatment policy. We also provide suggestions for mitigating these effects---for while there is much promise for mining observational health data to uncover better treatment policies, evaluation must be performed thoughtfully.


Multiresolution Kernel Approximation for Gaussian Process Regression

arXiv.org Machine Learning

Gaussian process regression generally does not scale to beyond a few thousands data points without applying some sort of kernel approximation method. Most approximations focus on the high eigenvalue part of the spectrum of the kernel matrix, $K$, which leads to bad performance when the length scale of the kernel is small. In this paper we introduce Multiresolution Kernel Approximation (MKA), the first true broad bandwidth kernel approximation algorithm. Important points about MKA are that it is memory efficient, and it is a direct method, which means that it also makes it easy to approximate $K^{-1}$ and $\mathop{\textrm{det}}(K)$.


Multiresolution Kernel Approximation for Gaussian Process Regression

Neural Information Processing Systems

Gaussian process regression generally does not scale to beyond a few thousands data points without applying some sort of kernel approximation method. Most approximations focus on the high eigenvalue part of the spectrum of the kernel matrix, $K$, which leads to bad performance when the length scale of the kernel is small. In this paper we introduce Multiresolution Kernel Approximation (MKA), the first true broad bandwidth kernel approximation algorithm. Important points about MKA are that it is memory efficient, and it is a direct method, which means that it also makes it easy to approximate $K^{-1}$ and $\mathop{\textrm{det}}(K)$.


An Adaptive Gradient Method for Online AUC Maximization

AAAI Conferences

Learning for maximizing AUC performance is an important research problem in machine learning. Unlike traditional batch learning methods for maximizing AUC which often suffer from poor scalability, recent years have witnessed some emerging studies that attempt to maximize AUC by single-pass online learning approaches. Despite their encouraging results reported, the existing online AUC maximization algorithms often adopt simple stochastic gradient descent approaches, which fail to exploit the geometry knowledge of the data observed in the online learning process, and thus could suffer from relatively slow convergence. To overcome the limitation of the existing studies, in this paper, we propose a novel algorithm of Adaptive Online AUC Maximization (AdaOAM), by applying an adaptive gradient method for exploiting the knowledge of historical gradients to perform more informative online learning. The new adaptive updating strategy by AdaOAM is less sensitive to parameter settings due to its natural effect of tuning the learning rate. In addition, the time complexity of the new algorithm remains the same as the previous non-adaptive algorithms. To demonstrate the effectiveness of the proposed algorithm, we analyze its theoretical bound, and further evaluate its empirical performance on both public benchmark datasets and anomaly detection datasets. The encouraging empirical results clearly show the effectiveness and efficiency of the proposed algorithm.


Learning Relative Similarity by Stochastic Dual Coordinate Ascent

AAAI Conferences

Learning relative similarity from pairwise instances is an important problem in machine learning and has a wide range of applications. Despite being studied for years, some existing methods solved by Stochastic Gradient Descent (SGD) techniques generally suffer from slow convergence. In this paper, we investigate the application of Stochastic Dual Coordinate Ascent (SDCA) technique to tackle the optimization task of relative similarity learning by extending from vector to matrix parameters. Theoretically, we prove the optimal linear convergence rate for the proposed SDCA algorithm, beating the well-known sublinear convergence rate by the previous best metric learning algorithms. Empirically, we conduct extensive experiments on both standard and large-scale data sets to validate the effectiveness of the proposed algorithm for retrieval tasks.