Not enough data to create a plot.
Try a different view from the menu above.
Ding, Yi
BiT-MamSleep: Bidirectional Temporal Mamba for EEG Sleep Staging
Zhou, Xinliang, Han, Yuzhe, Chen, Zhisheng, Liu, Chenyu, Ding, Yi, Jia, Ziyu, Liu, Yang
In this paper, we address the challenges in automatic sleep stage classification, particularly the high computational cost, inadequate modeling of bidirectional temporal dependencies, and class imbalance issues faced by Transformer-based models. To address these limitations, we propose BiT-MamSleep, a novel architecture that integrates the Triple-Resolution CNN (TRCNN) for efficient multi-scale feature extraction with the Bidirectional Mamba (BiMamba) mechanism, which models both short- and long-term temporal dependencies through bidirectional processing of EEG data. Additionally, BiT-MamSleep incorporates an Adaptive Feature Recalibration (AFR) module and a temporal enhancement block to dynamically refine feature importance, optimizing classification accuracy without increasing computational complexity. To further improve robustness, we apply optimization techniques such as Focal Loss and SMOTE to mitigate class imbalance. Extensive experiments on four public datasets demonstrate that BiT-MamSleep significantly outperforms state-of-the-art methods, particularly in handling long EEG sequences and addressing class imbalance, leading to more accurate and scalable sleep stage classification.
ETA: Evaluating Then Aligning Safety of Vision Language Models at Inference Time
Ding, Yi, Li, Bolian, Zhang, Ruqi
Vision Language Models (VLMs) have become essential backbones for multimodal intelligence, yet significant safety challenges limit their real-world application. While textual inputs are often effectively safeguarded, adversarial visual inputs can easily bypass VLM defense mechanisms. Existing defense methods are either resource-intensive, requiring substantial data and compute, or fail to simultaneously ensure safety and usefulness in responses. To address these limitations, we propose a novel two-phase inference-time alignment framework, Evaluating Then Aligning (ETA): 1) Evaluating input visual contents and output responses to establish a robust safety awareness in multimodal settings, and 2) Aligning unsafe behaviors at both shallow and deep levels by conditioning the VLMs' generative distribution with an interference prefix and performing sentence-level best-of-N to search the most harmless and helpful generation paths. Extensive experiments show that ETA outperforms baseline methods in terms of harmlessness, helpfulness, and efficiency, reducing the unsafe rate by 87.5% in cross-modality attacks and achieving 96.6% win-ties in GPT-4 helpfulness evaluation. The code is publicly available at https://github.com/DripNowhy/ETA.
Discovery and inversion of the viscoelastic wave equation in inhomogeneous media
Chen, Su, Ding, Yi, Miyake, Hiroe, Li, Xiaojun
In scientific machine learning, the task of identifying partial differential equations accurately from sparse and noisy data poses a significant challenge. Current sparse regression methods may identify inaccurate equations on sparse and noisy datasets and are not suitable for varying coefficients. To address this issue, we propose a hybrid framework that combines two alternating direction optimization phases: discovery and embedding. The discovery phase employs current well-developed sparse regression techniques to preliminarily identify governing equations from observations. The embedding phase implements a recurrent convolutional neural network (RCNN), enabling efficient processes for time-space iterations involved in discretized forms of wave equation. The RCNN model further optimizes the imperfect sparse regression results to obtain more accurate functional terms and coefficients. Through alternating update of discovery-embedding phases, essential physical equations can be robustly identified from noisy and low-resolution measurements. To assess the performance of proposed framework, numerical experiments are conducted on various scenarios involving wave equation in elastic/viscoelastic and homogeneous/inhomogeneous media. The results demonstrate that the proposed method exhibits excellent robustness and accuracy, even when faced with high levels of noise and limited data availability in both spatial and temporal domains.
Predictive Dynamic Fusion
Cao, Bing, Xia, Yinan, Ding, Yi, Zhang, Changqing, Hu, Qinghua
Multimodal fusion is crucial in joint decision-making systems for rendering holistic judgments. Since multimodal data changes in open environments, dynamic fusion has emerged and achieved remarkable progress in numerous applications. However, most existing dynamic multimodal fusion methods lack theoretical guarantees and easily fall into suboptimal problems, yielding unreliability and instability. To address this issue, we propose a Predictive Dynamic Fusion (PDF) framework for multimodal learning. We proceed to reveal the multimodal fusion from a generalization perspective and theoretically derive the predictable Collaborative Belief (Co-Belief) with Mono- and Holo-Confidence, which provably reduces the upper bound of generalization error. Accordingly, we further propose a relative calibration strategy to calibrate the predicted Co-Belief for potential uncertainty. Extensive experiments on multiple benchmarks confirm our superiority. Our code is available at https://github.com/Yinan-Xia/PDF.
Uncertainty-Aware Decarbonization for Datacenters
Li, Amy, Liu, Sihang, Ding, Yi
Building carbon-free datacenters depends on effective load scheduling, such as suspend-and-resume [1, 12, 18] and wait-and-scale [5, This paper represents the first effort to quantify uncertainty in 16]. The core idea of these scheduling strategies is to adapt to renewable carbon intensity forecasting for datacenter decarbonization. We energy supplies based on carbon intensity forecasts. Inaccurate identify and analyze two types of uncertainty--temporal and spatial--and carbon intensity forecasts can not only fail to reduce carbon discuss their system implications. To address the temporal emissions but may even increase them [4]. While prior work has dynamics in quantifying uncertainty for carbon intensity forecasting, introduced various methods for carbon intensity forecasting such we introduce a conformal prediction-based framework. Evaluation as ARIMA models [3] and neural networks [9, 10], they focus on results show that our technique robustly achieves target point-based estimation, neglecting to account for their uncertainty coverages in uncertainty quantification across various significance levels. As prior studies point out, considering uncertainty is crucial levels. We conduct two case studies using production power traces, for effective scheduling [17].
EmT: A Novel Transformer for Generalized Cross-subject EEG Emotion Recognition
Ding, Yi, Tong, Chengxuan, Zhang, Shuailei, Jiang, Muyun, Li, Yong, Liang, Kevin Lim Jun, Guan, Cuntai
Integrating prior knowledge of neurophysiology into neural network architecture enhances the performance of emotion decoding. While numerous techniques emphasize learning spatial and short-term temporal patterns, there has been limited emphasis on capturing the vital long-term contextual information associated with emotional cognitive processes. In order to address this discrepancy, we introduce a novel transformer model called emotion transformer (EmT). EmT is designed to excel in both generalized cross-subject EEG emotion classification and regression tasks. In EmT, EEG signals are transformed into a temporal graph format, creating a sequence of EEG feature graphs using a temporal graph construction module (TGC). A novel residual multi-view pyramid GCN module (RMPG) is then proposed to learn dynamic graph representations for each EEG feature graph within the series, and the learned representations of each graph are fused into one token. Furthermore, we design a temporal contextual transformer module (TCT) with two types of token mixers to learn the temporal contextual information. Finally, the task-specific output module (TSO) generates the desired outputs. Experiments on four publicly available datasets show that EmT achieves higher results than the baseline methods for both EEG emotion classification and regression tasks. The code is available at https://github.com/yi-ding-cs/EmT.
EEG-Deformer: A Dense Convolutional Transformer for Brain-computer Interfaces
Ding, Yi, Li, Yong, Sun, Hao, Liu, Rui, Tong, Chengxuan, Guan, Cuntai
Effectively learning the temporal dynamics in electroencephalogram (EEG) signals is challenging yet essential for decoding brain activities using brain-computer interfaces (BCIs). Although Transformers are popular for their long-term sequential learning ability in the BCI field, most methods combining Transformers with convolutional neural networks (CNNs) fail to capture the coarse-to-fine temporal dynamics of EEG signals. To overcome this limitation, we introduce EEG-Deformer, which incorporates two main novel components into a CNN-Transformer: (1) a Hierarchical Coarse-to-Fine Transformer (HCT) block that integrates a Fine-grained Temporal Learning (FTL) branch into Transformers, effectively discerning coarse-to-fine temporal patterns; and (2) a Dense Information Purification (DIP) module, which utilizes multi-level, purified temporal information to enhance decoding accuracy. Comprehensive experiments on three representative cognitive tasks consistently verify the generalizability of our proposed EEG-Deformer, demonstrating that it either outperforms existing state-of-the-art methods or is comparable to them. Visualization results show that EEG-Deformer learns from neurophysiologically meaningful brain regions for the corresponding cognitive tasks. The source code can be found at https://github.com/yi-ding-cs/EEG-Deformer.
Loss Modeling for Multi-Annotator Datasets
Jinadu, Uthman, Annan, Jesse, Wen, Shanshan, Ding, Yi
Accounting for the opinions of all annotators of a dataset is critical for fairness. However, when annotating large datasets, individual annotators will frequently provide thousands of ratings which can lead to fatigue. Additionally, these annotation processes can occur over multiple days which can lead to an inaccurate representation of an annotator's opinion over time. To combat this, we propose to learn a more accurate representation of diverse opinions by utilizing multitask learning in conjunction with loss-based label correction. We show that using our novel formulation, we can cleanly separate agreeing and disagreeing annotations. Furthermore, we demonstrate that this modification can improve prediction performance in a single or multi-annotator setting. Lastly, we show that this method remains robust to additional label noise that is applied to subjective data.
Turaco: Complexity-Guided Data Sampling for Training Neural Surrogates of Programs
Renda, Alex, Ding, Yi, Carbin, Michael
Programmers and researchers are increasingly developing surrogates of programs, models of a subset of the observable behavior of a given program, to solve a variety of software development challenges. Programmers train surrogates from measurements of the behavior of a program on a dataset of input examples. A key challenge of surrogate construction is determining what training data to use to train a surrogate of a given program. We present a methodology for sampling datasets to train neural-network-based surrogates of programs. We first characterize the proportion of data to sample from each region of a program's input space (corresponding to different execution paths of the program) based on the complexity of learning a surrogate of the corresponding execution path. We next provide a program analysis to determine the complexity of different paths in a program. We evaluate these results on a range of real-world programs, demonstrating that complexity-guided sampling results in empirical improvements in accuracy.
MASA-TCN: Multi-anchor Space-aware Temporal Convolutional Neural Networks for Continuous and Discrete EEG Emotion Recognition
Ding, Yi, Zhang, Su, Tang, Chuangao, Guan, Cuntai
Abstract--Emotion recognition using electroencephalogram (EEG) mainly has two scenarios: classification of the discrete labels and regression of the continuously tagged labels. Although many algorithms were proposed for classification tasks, there are only a few methods for regression tasks. For emotion regression, the label is continuous in time. A natural method is to learn the temporal dynamic patterns. In previous studies, long short-term memory (LSTM) and temporal convolutional neural networks (TCN) were utilized to learn the temporal contextual information from feature vectors of EEG. However, the spatial patterns of EEG were not effectively extracted. To enable the spatial learning ability of TCN towards better regression and classification performances, we propose a novel unified model, named MASA-TCN, for EEG emotion regression and classification tasks. The space-aware temporal layer enables TCN to additionally learn from spatial relations among EEG electrodes. Besides, a novel multi-anchor block with attentive fusion is proposed to learn dynamic temporal dependencies. Experiments on two publicly available datasets show MASA-TCN achieves higher results than the state-of-the-art methods for both EEG emotion regression and classification tasks.