Goto

Collaborating Authors

 Ding, Ning


EEG-Fest: Few-shot based Attention Network for Driver's Vigilance Estimation with EEG Signals

arXiv.org Artificial Intelligence

A lack of driver's vigilance is the main cause of most vehicle crashes. Electroencephalography(EEG) has been reliable and efficient tool for drivers' drowsiness estimation. Even though previous studies have developed accurate and robust driver's vigilance detection algorithms, these methods are still facing challenges on following areas: (a) small sample size training, (b) anomaly signal detection, and (c) subject-independent classification. In this paper, we propose a generalized few-shot model, namely EEG-Fest, to improve aforementioned drawbacks. The EEG-Fest model can (a) classify the query sample's drowsiness with a few samples, (b) identify whether a query sample is anomaly signals or not, and (c) achieve subject independent classification. The proposed algorithm achieves state-of-the-art results on the SEED-VIG dataset and the SADT dataset. The accuracy of the drowsy class achieves 92% and 94% for 1-shot and 5-shot support samples in the SEED-VIG dataset, and 62% and 78% for 1-shot and 5-shot support samples in the SADT dataset.


ProQA: Structural Prompt-based Pre-training for Unified Question Answering

arXiv.org Artificial Intelligence

Question Answering (QA) is a longstanding challenge in natural language processing. Existing QA works mostly focus on specific question types, knowledge domains, or reasoning skills. The specialty in QA research hinders systems from modeling commonalities between tasks and generalization for wider applications. To address this issue, we present ProQA, a unified QA paradigm that solves various tasks through a single model. ProQA takes a unified structural prompt as the bridge and improves the QA-centric ability by structural prompt-based pre-training. Through a structurally designed prompt-based input schema, ProQA concurrently models the knowledge generalization for all QA tasks while keeping the knowledge customization for every specific QA task. Furthermore, ProQA is pre-trained with structural prompt-formatted large-scale synthesized corpus, which empowers the model with the commonly-required QA ability. Experimental results on 11 QA benchmarks demonstrate that ProQA consistently boosts performance on both full data fine-tuning, few-shot learning, and zero-shot testing scenarios. Furthermore, ProQA exhibits strong ability in both continual learning and transfer learning by taking the advantages of the structural prompt.


MAVEN-ERE: A Unified Large-scale Dataset for Event Coreference, Temporal, Causal, and Subevent Relation Extraction

arXiv.org Artificial Intelligence

The diverse relationships among real-world events, including coreference, temporal, causal, and subevent relations, are fundamental to understanding natural languages. However, two drawbacks of existing datasets limit event relation extraction (ERE) tasks: (1) Small scale. Due to the annotation complexity, the data scale of existing datasets is limited, which cannot well train and evaluate data-hungry models. (2) Absence of unified annotation. Different types of event relations naturally interact with each other, but existing datasets only cover limited relation types at once, which prevents models from taking full advantage of relation interactions. To address these issues, we construct a unified large-scale human-annotated ERE dataset MAVEN-ERE with improved annotation schemes. It contains 103,193 event coreference chains, 1,216,217 temporal relations, 57,992 causal relations, and 15,841 subevent relations, which is larger than existing datasets of all the ERE tasks by at least an order of magnitude. Experiments show that ERE on MAVEN-ERE is quite challenging, and considering relation interactions with joint learning can improve performances. The dataset and source codes can be obtained from https://github.com/THU-KEG/MAVEN-ERE.


Few-shot Classification with Hypersphere Modeling of Prototypes

arXiv.org Artificial Intelligence

Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.


OpenPrompt: An Open-source Framework for Prompt-learning

arXiv.org Artificial Intelligence

Prompt-learning has become a new paradigm in modern natural language processing, which directly adapts pre-trained language models (PLMs) to $cloze$-style prediction, autoregressive modeling, or sequence to sequence generation, resulting in promising performances on various tasks. However, no standard implementation framework of prompt-learning is proposed yet, and most existing prompt-learning codebases, often unregulated, only provide limited implementations for specific scenarios. Since there are many details such as templating strategy, initializing strategy, and verbalizing strategy, etc. need to be considered in prompt-learning, practitioners face impediments to quickly adapting the desired prompt learning methods to their applications. In this paper, we present {OpenPrompt}, a unified easy-to-use toolkit to conduct prompt-learning over PLMs. OpenPrompt is a research-friendly framework that is equipped with efficiency, modularity, and extendibility, and its combinability allows the freedom to combine different PLMs, task formats, and prompting modules in a unified paradigm. Users could expediently deploy prompt-learning frameworks and evaluate the generalization of them on different NLP tasks without constraints. OpenPrompt is publicly released at {\url{ https://github.com/thunlp/OpenPrompt}}.


Exploring Low-dimensional Intrinsic Task Subspace via Prompt Tuning

arXiv.org Artificial Intelligence

How can pre-trained language models (PLMs) learn universal representations and effectively adapt to broad NLP tasks differing a lot superficially? In this work, we empirically find evidences indicating that the adaptations of PLMs to various tasks can be reparameterized as optimizing only a few free parameters in a common low-dimensional intrinsic task subspace, which may help us understand why PLMs could easily adapt to various NLP tasks with small-scale data. Specifically, to find such a subspace and examine its universality, we resort to the recent success of prompt tuning and decompose the soft prompts of multiple NLP tasks into the same low-dimensional nonlinear subspace, then we learn to adapt the PLM to unseen tasks or data by only tuning parameters in the subspace. We dub this pipeline as intrinsic prompt tuning (IPT). In experiments, we study diverse few-shot NLP tasks and surprisingly find that in a 5-dimensional subspace found with 100 random tasks, by only tuning 5 free parameters, we can recover 87% and 65% of the full prompt tuning performance for 100 seen tasks (using different training data) and 20 unseen tasks, respectively, showing great generalization ability of the found intrinsic task subspace. Besides being an analysis tool, IPT could further bring practical benefits, such as improving the prompt tuning stability.


Prompt-Learning for Fine-Grained Entity Typing

arXiv.org Artificial Intelligence

As an effective approach to tune pre-trained language models (PLMs) for specific tasks, prompt-learning has recently attracted much attention from researchers. By using \textit{cloze}-style language prompts to stimulate the versatile knowledge of PLMs, prompt-learning can achieve promising results on a series of NLP tasks, such as natural language inference, sentiment classification, and knowledge probing. In this work, we investigate the application of prompt-learning on fine-grained entity typing in fully supervised, few-shot and zero-shot scenarios. We first develop a simple and effective prompt-learning pipeline by constructing entity-oriented verbalizers and templates and conducting masked language modeling. Further, to tackle the zero-shot regime, we propose a self-supervised strategy that carries out distribution-level optimization in prompt-learning to automatically summarize the information of entity types. Extensive experiments on three fine-grained entity typing benchmarks (with up to 86 classes) under fully supervised, few-shot and zero-shot settings show that prompt-learning methods significantly outperform fine-tuning baselines, especially when the training data is insufficient.


CLINE: Contrastive Learning with Semantic Negative Examples for Natural Language Understanding

arXiv.org Artificial Intelligence

Despite pre-trained language models have proven useful for learning high-quality semantic representations, these models are still vulnerable to simple perturbations. Recent works aimed to improve the robustness of pre-trained models mainly focus on adversarial training from perturbed examples with similar semantics, neglecting the utilization of different or even opposite semantics. Different from the image processing field, the text is discrete and few word substitutions can cause significant semantic changes. To study the impact of semantics caused by small perturbations, we conduct a series of pilot experiments and surprisingly find that adversarial training is useless or even harmful for the model to detect these semantic changes. To address this problem, we propose Contrastive Learning with semantIc Negative Examples (CLINE), which constructs semantic negative examples unsupervised to improve the robustness under semantically adversarial attacking. By comparing with similar and opposite semantic examples, the model can effectively perceive the semantic changes caused by small perturbations. Empirical results show that our approach yields substantial improvements on a range of sentiment analysis, reasoning, and reading comprehension tasks. And CLINE also ensures the compactness within the same semantics and separability across different semantics in sentence-level.


Pre-Trained Models: Past, Present and Future

arXiv.org Artificial Intelligence

Large-scale pre-trained models (PTMs) such as BERT and GPT have recently achieved great success and become a milestone in the field of artificial intelligence (AI). Owing to sophisticated pre-training objectives and huge model parameters, large-scale PTMs can effectively capture knowledge from massive labeled and unlabeled data. By storing knowledge into huge parameters and fine-tuning on specific tasks, the rich knowledge implicitly encoded in huge parameters can benefit a variety of downstream tasks, which has been extensively demonstrated via experimental verification and empirical analysis. It is now the consensus of the AI community to adopt PTMs as backbone for downstream tasks rather than learning models from scratch. In this paper, we take a deep look into the history of pre-training, especially its special relation with transfer learning and self-supervised learning, to reveal the crucial position of PTMs in the AI development spectrum. Further, we comprehensively review the latest breakthroughs of PTMs. These breakthroughs are driven by the surge of computational power and the increasing availability of data, towards four important directions: designing effective architectures, utilizing rich contexts, improving computational efficiency, and conducting interpretation and theoretical analysis. Finally, we discuss a series of open problems and research directions of PTMs, and hope our view can inspire and advance the future study of PTMs.


Few-NERD: A Few-Shot Named Entity Recognition Dataset

arXiv.org Artificial Intelligence

Recently, considerable literature has grown up around the theme of few-shot named entity recognition (NER), but little published benchmark data specifically focused on the practical and challenging task. Current approaches collect existing supervised NER datasets and re-organize them to the few-shot setting for empirical study. These strategies conventionally aim to recognize coarse-grained entity types with few examples, while in practice, most unseen entity types are fine-grained. In this paper, we present Few-NERD, a large-scale human-annotated few-shot NER dataset with a hierarchy of 8 coarse-grained and 66 fine-grained entity types. Few-NERD consists of 188,238 sentences from Wikipedia, 4,601,160 words are included and each is annotated as context or a part of a two-level entity type. To the best of our knowledge, this is the first few-shot NER dataset and the largest human-crafted NER dataset. We construct benchmark tasks with different emphases to comprehensively assess the generalization capability of models. Extensive empirical results and analysis show that Few-NERD is challenging and the problem requires further research. We make Few-NERD public at https://ningding97.github.io/fewnerd/.