Goto

Collaborating Authors

 Ding, Liang


SpliceMix: A Cross-scale and Semantic Blending Augmentation Strategy for Multi-label Image Classification

arXiv.org Artificial Intelligence

Recently, Mix-style data augmentation methods (e.g., Mixup and CutMix) have shown promising performance in various visual tasks. However, these methods are primarily designed for single-label images, ignoring the considerable discrepancies between single- and multi-label images, i.e., a multi-label image involves multiple co-occurred categories and fickle object scales. On the other hand, previous multi-label image classification (MLIC) methods tend to design elaborate models, bringing expensive computation. In this paper, we introduce a simple but effective augmentation strategy for multi-label image classification, namely SpliceMix. The "splice" in our method is two-fold: 1) Each mixed image is a splice of several downsampled images in the form of a grid, where the semantics of images attending to mixing are blended without object deficiencies for alleviating co-occurred bias; 2) We splice mixed images and the original mini-batch to form a new SpliceMixed mini-batch, which allows an image with different scales to contribute to training together. Furthermore, such splice in our SpliceMixed mini-batch enables interactions between mixed images and original regular images. We also offer a simple and non-parametric extension based on consistency learning (SpliceMix-CL) to show the flexible extensibility of our SpliceMix. Extensive experiments on various tasks demonstrate that only using SpliceMix with a baseline model (e.g., ResNet) achieves better performance than state-of-the-art methods. Moreover, the generalizability of our SpliceMix is further validated by the improvements in current MLIC methods when married with our SpliceMix. The code is available at https://github.com/zuiran/SpliceMix.


Merging Experts into One: Improving Computational Efficiency of Mixture of Experts

arXiv.org Artificial Intelligence

Scaling the size of language models usually leads to remarkable advancements in NLP tasks. But it often comes with a price of growing computational cost. Although a sparse Mixture of Experts (MoE) can reduce the cost by activating a small subset of parameters (e.g., one expert) for each input, its computation escalates significantly if increasing the number of activated experts, limiting its practical utility. Can we retain the advantages of adding more experts without substantially increasing the computational costs? In this paper, we first demonstrate the superiority of selecting multiple experts and then propose a computation-efficient approach called \textbf{\texttt{Merging Experts into One}} (MEO), which reduces the computation cost to that of a single expert. Extensive experiments show that MEO significantly improves computational efficiency, e.g., FLOPS drops from 72.0G of vanilla MoE to 28.6G (MEO). Moreover, we propose a token-level attention block that further enhances the efficiency and performance of token-level MEO, e.g., 83.3\% (MEO) vs. 82.6\% (vanilla MoE) average score on the GLUE benchmark. Our code will be released upon acceptance. Code will be released at: \url{https://github.com/Shwai-He/MEO}.


Fine-tuning Global Model via Data-Free Knowledge Distillation for Non-IID Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint. Data heterogeneity is one of the main challenges in FL, which results in slow convergence and degraded performance. Most existing approaches only tackle the heterogeneity challenge by restricting the local model update in client, ignoring the performance drop caused by direct global model aggregation. Instead, we propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG), which relieves the issue of direct model aggregation. Concretely, FedFTG explores the input space of local models through a generator, and uses it to transfer the knowledge from local models to the global model. Besides, we propose a hard sample mining scheme to achieve effective knowledge distillation throughout the training. In addition, we develop customized label sampling and class-level ensemble to derive maximum utilization of knowledge, which implicitly mitigates the distribution discrepancy across clients. Extensive experiments show that our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.


Towards Making the Most of ChatGPT for Machine Translation

arXiv.org Artificial Intelligence

ChatGPT shows remarkable capabilities for machine translation (MT). Several prior studies have shown that it achieves comparable results to commercial systems for high-resource languages, but lags behind in complex tasks, e.g., low-resource and distant-language-pairs translation. However, they usually adopt simple prompts which can not fully elicit the capability of ChatGPT. In this paper, we aim to further mine ChatGPT's translation ability by revisiting several aspects: temperature, task information, and domain information, and correspondingly propose an optimal temperature setting and two (simple but effective) prompts: Task-Specific Prompts (TSP) and Domain-Specific Prompts (DSP). We show that: 1) The performance of ChatGPT depends largely on temperature, and a lower temperature usually can achieve better performance; 2) Emphasizing the task information can further improve ChatGPT's performance, particularly in complex MT tasks; 3) Introducing domain information can elicit ChatGPT's generalization ability and improve its performance in the specific domain; 4) ChatGPT tends to generate hallucinations for non-English-centric MT tasks, which can be partially addressed by our proposed prompts but still need to be highlighted for the MT/NLP community. We also explore the effects of advanced in-context learning strategies and find a (negative but interesting) observation: the powerful chain-of-thought prompt leads to word-by-word translation behavior, thus bringing significant translation degradation.


Zero-Shot Sharpness-Aware Quantization for Pre-trained Language Models

arXiv.org Artificial Intelligence

Quantization is a promising approach for reducing memory overhead and accelerating inference, especially in large pre-trained language model (PLM) scenarios. While having no access to original training data due to security and privacy concerns has emerged the demand for zero-shot quantization. Most of the cutting-edge zero-shot quantization methods primarily 1) apply to computer vision tasks, and 2) neglect of overfitting problem in the generative adversarial learning process, leading to sub-optimal performance. Motivated by this, we propose a novel zero-shot sharpness-aware quantization (ZSAQ) framework for the zero-shot quantization of various PLMs. The key algorithm in solving ZSAQ is the SAM-SGA optimization, which aims to improve the quantization accuracy and model generalization via optimizing a minimax problem. We theoretically prove the convergence rate for the minimax optimization problem and this result can be applied to other nonconvex-PL minimax optimization frameworks. Extensive experiments on 11 tasks demonstrate that our method brings consistent and significant performance gains on both discriminative and generative PLMs, i.e., up to +6.98 average score. Furthermore, we empirically validate that our method can effectively improve the model generalization.


Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer

arXiv.org Artificial Intelligence

The Mixture of Experts (MoE) has emerged as a highly successful technique in deep learning, based on the principle of divide-and-conquer to maximize model capacity without significant additional computational cost. Even in the era of large-scale language models (LLMs), MoE continues to play a crucial role, as some researchers have indicated that GPT-4 adopts the MoE structure to ensure diverse inference results. However, MoE is susceptible to performance degeneracy, particularly evident in the issues of imbalance and homogeneous representation among experts. While previous studies have extensively addressed the problem of imbalance, the challenge of homogeneous representation remains unresolved. In this study, we shed light on the homogeneous representation problem, wherein experts in the MoE fail to specialize and lack diversity, leading to frustratingly high similarities in their representations (up to 99% in a well-performed MoE model). This problem restricts the expressive power of the MoE and, we argue, contradicts its original intention. To tackle this issue, we propose a straightforward yet highly effective solution: OMoE, an orthogonal expert optimizer. Additionally, we introduce an alternating training strategy that encourages each expert to update in a direction orthogonal to the subspace spanned by other experts. Our algorithm facilitates MoE training in two key ways: firstly, it explicitly enhances representation diversity, and secondly, it implicitly fosters interaction between experts during orthogonal weights computation. Through extensive experiments, we demonstrate that our proposed optimization algorithm significantly improves the performance of fine-tuning the MoE model on the GLUE benchmark, SuperGLUE benchmark, question-answering task, and name entity recognition tasks.


Error Analysis Prompting Enables Human-Like Translation Evaluation in Large Language Models: A Case Study on ChatGPT

arXiv.org Artificial Intelligence

Generative large language models (LLMs), e.g., ChatGPT, have demonstrated remarkable proficiency across several NLP tasks, such as machine translation, text summarization. Recent research (Kocmi and Federmann, 2023) has shown that utilizing ChatGPT for assessing the quality of machine translation (MT) achieves state-of-the-art performance at the system level but performs poorly at the segment level. To further improve the performance of LLMs on MT quality assessment, we conduct an investigation into several prompting methods, and propose a new prompting method called Error Analysis Prompting (EAPrompt) by combining Chain-of-Thoughts (Wei et al., 2022) and Error Analysis (Lu et al., 2022). Our results on WMT22 indicate that prompting LLMs like ChatGPT with error analysis can generate human-like MT evaluations at both the system and segment level. Additionally, we first discover some limitations of ChatGPT as an MT evaluator, such as changing the order of input may significantly influence the judgment when providing multiple translations in a single query. This work provides a preliminary experience of prompting LLMs as an evaluator to improve the reliability of translation evaluation metrics under the error analysis paradigm.


Unlikelihood Tuning on Negative Samples Amazingly Improves Zero-Shot Translation

arXiv.org Artificial Intelligence

Zero-shot translation (ZST), which is generally based on a multilingual neural machine translation model, aims to translate between unseen language pairs in training data. The common practice to guide the zero-shot language mapping during inference is to deliberately insert the source and target language IDs, e.g., for English and for German. Recent studies have shown that language IDs sometimes fail to navigate the ZST task, making them suffer from the off-target problem (non-target language words exist in the generated translation) and, therefore, difficult to apply the current multilingual translation model to a broad range of zero-shot language scenarios. To understand when and why the navigation capabilities of language IDs are weakened, we compare two extreme decoder input cases in the ZST directions: Off-Target (OFF) and On-Target (ON) cases. By contrastively visualizing the contextual word representations (CWRs) of these cases with teacher forcing, we show that 1) the CWRs of different languages are effectively distributed in separate regions when the sentence and ID are matched (ON setting), and 2) if the sentence and ID are unmatched (OFF setting), the CWRs of different languages are chaotically distributed. Our analyses suggest that although they work well in ideal ON settings, language IDs become fragile and lose their navigation ability when faced with off-target tokens, which commonly exist during inference but are rare in training scenarios. In response, we employ unlikelihood tuning on the negative (OFF) samples to minimize their probability such that the language IDs can discriminate between the on- and off-target tokens during training. Experiments spanning 40 ZST directions show that our method reduces the off-target ratio by -48.0% on average, leading to a +9.1 BLEU improvement with only an extra +0.3% tuning cost.


Deep Model Fusion: A Survey

arXiv.org Artificial Intelligence

Deep model fusion/merging is an emerging technique that merges the parameters or predictions of multiple deep learning models into a single one. It combines the abilities of different models to make up for the biases and errors of a single model to achieve better performance. However, deep model fusion on large-scale deep learning models (e.g., LLMs and foundation models) faces several challenges, including high computational cost, high-dimensional parameter space, interference between different heterogeneous models, etc. Although model fusion has attracted widespread attention due to its potential to solve complex real-world tasks, there is still a lack of complete and detailed survey research on this technique. Accordingly, in order to understand the model fusion method better and promote its development, we present a comprehensive survey to summarize the recent progress. Specifically, we categorize existing deep model fusion methods as four-fold: (1) "Mode connectivity", which connects the solutions in weight space via a path of non-increasing loss, in order to obtain better initialization for model fusion; (2) "Alignment" matches units between neural networks to create better conditions for fusion; (3) "Weight average", a classical model fusion method, averages the weights of multiple models to obtain more accurate results closer to the optimal solution; (4) "Ensemble learning" combines the outputs of diverse models, which is a foundational technique for improving the accuracy and robustness of the final model. In addition, we analyze the challenges faced by deep model fusion and propose possible research directions for model fusion in the future. Our review is helpful in deeply understanding the correlation between different model fusion methods and practical application methods, which can enlighten the research in the field of deep model fusion.


MerA: Merging Pretrained Adapters For Few-Shot Learning

arXiv.org Artificial Intelligence

Adapter tuning, which updates only a few parameters, has become a mainstream method for fine-tuning pretrained language models to downstream tasks. However, it often yields subpar results in few-shot learning. AdapterFusion, which assembles pretrained adapters using composition layers tailored to specific tasks, is a possible solution but significantly increases trainable parameters and deployment costs. Despite this, our preliminary study reveals that even single adapters can outperform Adapterfusion in few-shot learning, urging us to propose \textbf{\texttt{Merging Pretrained Adapters}} (MerA) that efficiently incorporates pretrained adapters to a single model through model fusion. Extensive experiments on two PLMs demonstrate that MerA achieves substantial improvements compared to both single adapters and AdapterFusion. To further enhance the capacity of MerA, we also introduce a simple yet effective technique, referred to as the "\textit{same-track}" setting, that merges adapters from the same track of pretraining tasks. With the implementation of the "\textit{same-track}" setting, we observe even more impressive gains, surpassing the performance of both full fine-tuning and adapter tuning by a substantial margin, e.g., 3.5\% in MRPC and 5.0\% in MNLI.