Ding, Li
Reports of the AAAI 2011 Fall Symposia
Blisard, Sam (Naval Research Laboratory) | Carmichael, Ted (University of North Carolina at Charlotte) | Ding, Li (University of Maryland, Baltimore County) | Finin, Tim (University of Maryland, Baltimore County) | Frost, Wende (Naval Research Laboratory) | Graesser, Arthur (University of Memphis) | Hadzikadic, Mirsad (University of North Carolina at Charlotte) | Kagal, Lalana (Massachusetts Institute of Technology) | Kruijff, Geert-Jan M. (German Research Center for Artificial Intelligence) | Langley, Pat (Arizona State University) | Lester, James (North Carolina State University) | McGuinness, Deborah L. (Rensselaer Polytechnic Institute) | Mostow, Jack (Carnegie Mellon University) | Papadakis, Panagiotis (University of Sapienza, Rome) | Pirri, Fiora (Sapienza University of Rome) | Prasad, Rashmi (University of Wisconsin-Milwaukee) | Stoyanchev, Svetlana (Columbia University) | Varakantham, Pradeep (Singapore Management University)
The Association for the Advancement of Artificial Intelligence was pleased to present the 2011 Fall Symposium Series, held Friday through Sunday, November 4–6, at the Westin Arlington Gateway in Arlington, Virginia. The titles of the seven symposia are as follows: (1) Advances in Cognitive Systems; (2) Building Representations of Common Ground with Intelligent Agents; (3) Complex Adaptive Systems: Energy, Information and Intelligence; (4) Multiagent Coordination under Uncertainty; (5) Open Government Knowledge: AI Opportunities and Challenges; (6) Question Generation; and (7) Robot-Human Teamwork in Dynamic Adverse Environment. The highlights of each symposium are presented in this report.
Selective Privacy in a Web-Based World: Challenges of Representing and Inferring Context
Waterman, K. Krasnow (Massachusetts Institute of Technology) | McGuinness, Deborah L (Rensselaer Polytechnic Institute) | Ding, Li (Rensselaer Polytechnic Institute)
There is a growing awareness and interest in the issues of accountability and transparency in the pursuit of digital privacy. In previous work, we asserted that systems needed to be “policy aware” and able to compute the likely compliance of any digital transaction with the associated privacy policies (law, rule, or contract). This paper focuses on one critical step in respecting privacy in a digital environment, that of understanding the context associated with each digital transaction. For any individual transaction, the pivotal fact may be context information about the data, the party seeking to use it, the specific action to be taken, or the associated rules. We believe that the granularity of semantic web representation is well suited to this challenge and we support this position in the paper.
Data-gov Wiki: Towards Linking Government Data
Ding, Li (Rensselaer Polytechnic Institute) | Difranzo, Dominic (Rensselaer Polytechnic Institute) | Graves, Alvaro (Rensselaer Polytechnic Institute) | Michaelis, James R (Rensselaer Polytechnic Institute) | Li, Xian (Rensselaer Polytechnic Institute) | McGuinness, Deborah L (Rensselaer Polytechnic Institute) | Hendler, Jim (Rensselaer Polytechnic Institute)
Data.gov is a website that provides US Government data to the general public to ensure better accountability and transparency. Our recent work on the Data-gov Wiki, which attempts to integrate the datasets published at Data.gov into the Linking Open Data (LOD) cloud (yielding "linked government data"), has produced 5 billion triples – covering a range of topics including: government spending, environmental records, and statistics on the cost and usage of public services. In this paper, we investigate the role of Semantic Web technologies in converting, enhancing and using linked government data. In particular, we show how government data can be (i) inter-linked by sharing the same terms and URIs, (ii) linked to existing data sources ranging from the LOD cloud (e.g. DBpedia) to the conventional web (e.g. the New York Times), and (iii) cross-linked by their knowledge provenance (which captures, among other things, derivation and revision histories).
Reports of the AAAI 2009 Spring Symposia
Bao, Jie (Rensselaer Polytechnic Institute) | Bojars, Uldis (National University of Ireland) | Choudhury, Ranzeem (Dartmouth College) | Ding, Li (Rensselaer Polytechnic Institute) | Greaves, Mark (Vulcan Inc.) | Kapoor, Ashish (Microsoft Research) | Louchart, Sandy (Heriot-Watt University) | Mehta, Manish (Georgia Institute of Technology) | Nebel, Bernhard (Albert-Ludwigs University Freiburg) | Nirenburg, Sergei (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County) | Roberts, David L. (Georgia Institute of Technology) | Sanfilippo, Antonio (Pacific Northwest National Laboratory) | Stojanovic, Nenad (University of Karlsruhe) | Stubbs, Kristen (iRobot Corportion) | Thomaz, Andrea L. (Georgia Institute of Technology) | Tsui, Katherine (University of Massachusetts Lowell) | Woelfl, Stefan (Albert-Ludwigs University Freiburg)
The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain.
Reports of the AAAI 2009 Spring Symposia
Bao, Jie (Rensselaer Polytechnic Institute) | Bojars, Uldis (National University of Ireland) | Choudhury, Ranzeem (Dartmouth College) | Ding, Li (Rensselaer Polytechnic Institute) | Greaves, Mark (Vulcan Inc.) | Kapoor, Ashish (Microsoft Research) | Louchart, Sandy (Heriot-Watt University) | Mehta, Manish (Georgia Institute of Technology) | Nebel, Bernhard (Albert-Ludwigs University Freiburg) | Nirenburg, Sergei (University of Maryland Baltimore County) | Oates, Tim (University of Maryland Baltimore County) | Roberts, David L. (Georgia Institute of Technology) | Sanfilippo, Antonio (Pacific Northwest National Laboratory) | Stojanovic, Nenad (University of Karlsruhe) | Stubbs, Kristen (iRobot Corportion) | Thomaz, Andrea L. (Georgia Institute of Technology) | Tsui, Katherine (University of Massachusetts Lowell) | Woelfl, Stefan (Albert-Ludwigs University Freiburg)
The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, was pleased to present the 2009 Spring Symposium Series, held Monday through Wednesday, March 23–25, 2009 at Stanford University. The titles of the nine symposia were Agents that Learn from Human Teachers, Benchmarking of Qualitative Spatial and Temporal Reasoning Systems, Experimental Design for Real-World Systems, Human Behavior Modeling, Intelligent Event Processing, Intelligent Narrative Technologies II, Learning by Reading and Learning to Read, Social Semantic Web: Where Web 2.0 Meets Web 3.0, and Technosocial Predictive Analytics. The goal of the Agents that Learn from Human Teachers was to investigate how we can enable software and robotics agents to learn from real-time interaction with an everyday human partner. The aim of the Benchmarking of Qualitative Spatial and Temporal Reasoning Systems symposium was to initiate the development of a problem repository in the field of qualitative spatial and temporal reasoning and identify a graded set of challenges for future midterm and long-term research. The Experimental Design symposium discussed the challenges of evaluating AI systems. The Human Behavior Modeling symposium explored reasoning methods for understanding various aspects of human behavior, especially in the context of designing intelligent systems that interact with humans. The Intelligent Event Processing symposium discussed the need for more AI-based approaches in event processing and defined a kind of research agenda for the field, coined as intelligent complex event processing (iCEP). The Intelligent Narrative Technologies II AAAI symposium discussed innovations, progress, and novel techniques in the research domain. The Learning by Reading and Learning to Read symposium explored two aspects of making natural language texts semantically accessible to, and processable by, machines. The Social Semantic Web symposium focused on the real-world grand challenges in this area. Finally, the Technosocial Predictive Analytics symposium explored new methods for anticipatory analytical thinking that provide decision advantage through the integration of human and physical models.
An Ensemble Learning and Problem Solving Architecture for Airspace Management
Zhang, Xiaoqin (Shelly) (University of Massachusetts) | Yoon, Sungwook (Arizona State University) | DiBona, Phillip (Lockheed Martin Advanced Technology Laboratories) | Appling, Darren (Georgia Institute of Technology) | Ding, Li (Rensselaer Polytechnic Institute) | Doppa, Janardhan (Oregon State University) | Green, Derek (University of Wyoming) | Guo, Jinhong (Lockheed Martin Advanced Technology Laboratories) | Kuter, Ugur (University of Maryland) | Levine, Geoff (University of Illinois at Urbana) | MacTavish, Reid (Georgia Institute of Technology) | McFarlane, Daniel (Lockheed Martin Advanced Technology Laboratories) | Michaelis, James (Rensselaer Polytechnic Institute) | Mostafa, Hala (University of Massachusetts) | Ontanon, Santiago (Georgia Institute of Technology) | Parker, Charles (Georgia Institute of Technology) | Radhakrishnan, Jainarayan (University of Wyoming) | Rebguns, Anton (University of Massachusetts) | Shrestha, Bhavesh (Fujitsu Laboratories of America) | Song, Zhexuan (Georgia Institute of Technology) | Trewhitt, Ethan (University of Massachusetts) | Zafar, Huzaifa (University of Massachusetts) | Zhang, Chongjie (University of Massachusetts) | Corkill, Daniel (University of Illinois at Urbana-Champaign) | DeJong, Gerald (Oregon State University) | Dietterich, Thomas (Arizona State University) | Kambhampati, Subbarao (University of Massachusetts) | Lesser, Victor (Rensselaer Polytechnic Institute) | McGuinness, Deborah L. (Georgia Institute of Technology) | Ram, Ashwin (University of Wyoming) | Spears, Diana (Oregon State University) | Tadepalli, Prasad (Georgia Institute of Technology) | Whitaker, Elizabeth (Oregon State University) | Wong, Weng-Keen (Rensselaer Polytechnic Institute) | Hendler, James (Lockheed Martin Advanced Technology Laboratories) | Hofmann, Martin (Lockheed Martin Advanced Technology Laboratories) | Whitebread, Kenneth
In this paper we describe the application of a novel learning and problem solving architecture to the domain of airspace management, where multiple requests for the use of airspace need to be reconciled and managed automatically. The key feature of our "Generalized Integrated Learning Architecture" (GILA) is a set of integrated learning and reasoning (ILR) systems coordinated by a central meta-reasoning executive (MRE). Each ILR learns independently from the same training example and contributes to problem-solving in concert with other ILRs as directed by the MRE. Formal evaluations show that our system performs as well as or better than humans after learning from the same training data. Further, GILA outperforms any individual ILR run in isolation, thus demonstrating the power of the ensemble architecture for learning and problem solving.