Plotting

 Ding, Kaize


Eliciting Structural and Semantic Global Knowledge in Unsupervised Graph Contrastive Learning

arXiv.org Artificial Intelligence

Graph Contrastive Learning (GCL) has recently drawn much research interest for learning generalizable node representations in a self-supervised manner. In general, the contrastive learning process in GCL is performed on top of the representations learned by a graph neural network (GNN) backbone, which transforms and propagates the node contextual information based on its local neighborhoods. However, nodes sharing similar characteristics may not always be geographically close, which poses a great challenge for unsupervised GCL efforts due to their inherent limitations in capturing such global graph knowledge. In this work, we address their inherent limitations by proposing a simple yet effective framework -- Simple Neural Networks with Structural and Semantic Contrastive Learning} (S^3-CL). Notably, by virtue of the proposed structural and semantic contrastive learning algorithms, even a simple neural network can learn expressive node representations that preserve valuable global structural and semantic patterns. Our experiments demonstrate that the node representations learned by S^3-CL achieve superior performance on different downstream tasks compared with the state-of-the-art unsupervised GCL methods. Implementation and more experimental details are publicly available at \url{https://github.com/kaize0409/S-3-CL.}


Graph Prototypical Networks for Few-shot Learning on Attributed Networks

arXiv.org Machine Learning

Attributed networks nowadays are ubiquitous in a myriad of high-impact applications, such as social network analysis, financial fraud detection, and drug discovery. As a central analytical task on attributed networks, node classification has received much attention in the research community. In real-world attributed networks, a large portion of node classes only contain limited labeled instances, rendering a long-tail node class distribution. Existing node classification algorithms are unequipped to handle the \textit{few-shot} node classes. As a remedy, few-shot learning has attracted a surge of attention in the research community. Yet, few-shot node classification remains a challenging problem as we need to address the following questions: (i) How to extract meta-knowledge from an attributed network for few-shot node classification? (ii) How to identify the informativeness of each labeled instance for building a robust and effective model? To answer these questions, in this paper, we propose a graph meta-learning framework -- Graph Prototypical Networks (GPN). By constructing a pool of semi-supervised node classification tasks to mimic the real test environment, GPN is able to perform \textit{meta-learning} on an attributed network and derive a highly generalizable model for handling the target classification task. Extensive experiments demonstrate the superior capability of GPN in few-shot node classification.


Graph Neural Networks with High-order Feature Interactions

arXiv.org Machine Learning

Network representation learning, a fundamental research problem which aims at learning low-dimension node representations on graph-structured data, has been extensively studied in the research community. By generalizing the power of neural networks on graph-structured data, graph neural networks (GNNs) achieve superior capability in network representation learning. However, the node features of many real-world graphs could be high-dimensional and sparse, rendering the learned node representations from existing GNN architectures less expressive. The main reason lies in that those models directly makes use of the raw features of nodes as input for the message-passing and have limited power in capturing sophisticated interactions between features. In this paper, we propose a novel GNN framework for learning node representations that incorporate high-order feature interactions on feature-sparse graphs. Specifically, the proposed message aggregator and feature factorizer extract two channels of embeddings from the feature-sparse graph, characterizing the aggregated node features and high-order feature interactions, respectively. Furthermore, we develop an attentive fusion network to seamlessly combine the information from two different channels and learn the feature interaction-aware node representations. Extensive experiments on various datasets demonstrate the effectiveness of the proposed framework on a variety of graph learning tasks.