Plotting

 Ding, Jingtao


UniST: A Prompt-Empowered Universal Model for Urban Spatio-Temporal Prediction

arXiv.org Artificial Intelligence

Urban spatio-temporal prediction is crucial for informed decision-making, such as traffic management, resource optimization, and emergence response. Despite remarkable breakthroughs in pretrained natural language models that enable one model to handle diverse tasks, a universal solution for spatio-temporal prediction remains challenging Existing prediction approaches are typically tailored for specific spatio-temporal scenarios, requiring task-specific model designs and extensive domain-specific training data. In this study, we introduce UniST, a universal model designed for general urban spatio-temporal prediction across a wide range of scenarios. Inspired by large language models, UniST achieves success through: (i) utilizing diverse spatio-temporal data from different scenarios, (ii) effective pre-training to capture complex spatio-temporal dynamics, (iii) knowledge-guided prompts to enhance generalization capabilities. These designs together unlock the potential of building a universal model for various scenarios Extensive experiments on more than 20 spatio-temporal scenarios demonstrate UniST's efficacy in advancing state-of-the-art performance, especially in few-shot and zero-shot prediction. The datasets and code implementation are released on https://github.com/tsinghua-fib-lab/UniST.


Artificial Intelligence for Complex Network: Potential, Methodology and Application

arXiv.org Artificial Intelligence

For example, cells are described as complex networks of chemicals linked by chemical reactions [7]; ecological networks link populations together through food chains [64]; and the World Wide Web is a vast virtual network of web pages and hyperlinks [47]. These complex networks are just a few of many examples. The local microscopic behavior of these complex networks often shows disorder. However, at the macroscopic scale, they show simple and even symmetrical structures. In order to understand the transition and evolution of complex systems from microscopic disorder to macroscopic order, current complex network studies mainly fall into the following paradigm: the combination of graph theory and statistical mechanics [3]. They construct the core principle of complex network science, that is, simple random rules and network dynamics together drive the emergence of non-trivial topological structures. Early works mainly focused on the topology of the interactions between the components, i.e., the birth-death process of edges on the graph. The two representative works, the Watts-Strogatz (WS) model and the scale-free model [11, 252], embody this principle and successfully generate graphs that approach real-world complex networks with high clustering coefficients and small average paths or power-law degree distribution. Despite their success in certain domains [17, 221, 222, 235], they do not provide a way to model the dynamics of the nodes, i.e., the change in the node's features.


Beyond Imitation: Generating Human Mobility from Context-aware Reasoning with Large Language Models

arXiv.org Artificial Intelligence

Human mobility behaviours are closely linked to various important societal problems such as traffic congestion, and epidemic control. However, collecting mobility data can be prohibitively expensive and involves serious privacy issues, posing a pressing need for high-quality generative mobility models. Previous efforts focus on learning the behaviour distribution from training samples, and generate new mobility data by sampling the learned distributions. They cannot effectively capture the coherent intentions that drive mobility behavior, leading to low sample efficiency and semantic-awareness. Inspired by the emergent reasoning ability in LLMs, we propose a radical perspective shift that reformulates mobility generation as a commonsense reasoning problem. In this paper, we design a novel Mobility Generation as Reasoning (MobiGeaR) framework that prompts LLM to recursively generate mobility behaviour. Specifically, we design a context-aware chain-of-thoughts prompting technique to align LLMs with context-aware mobility behaviour by few-shot in-context learning. Besides, MobiGeaR employ a divide-and-coordinate mechanism to exploit the synergistic effect between LLM reasoning and mechanistic gravity model. It leverages the step-by-step LLM reasoning to recursively generate a temporal template of activity intentions, which are then mapped to physical locations with a mechanistic gravity model. Experiments on two real-world datasets show MobiGeaR achieves state-of-the-art performance across all metrics, and substantially reduces the size of training samples at the same time. Besides, MobiGeaR also significantly improves the semantic-awareness of mobility generation by improving the intention accuracy by 62.23% and the generated mobility data is proven effective in boosting the performance of downstream applications. The implementation of our approach is available in the paper.


Social Physics Informed Diffusion Model for Crowd Simulation

arXiv.org Artificial Intelligence

Crowd simulation holds crucial applications in various domains, such as urban planning, architectural design, and traffic arrangement. In recent years, physics-informed machine learning methods have achieved state-of-the-art performance in crowd simulation but fail to model the heterogeneity and multi-modality of human movement comprehensively. In this paper, we propose a social physics-informed diffusion model named SPDiff to mitigate the above gap. SPDiff takes both the interactive and historical information of crowds in the current timeframe to reverse the diffusion process, thereby generating the distribution of pedestrian movement in the subsequent timeframe. Inspired by the well-known social physics model, i.e., Social Force, regarding crowd dynamics, we design a crowd interaction module to guide the denoising process and further enhance this module with the equivariant properties of crowd interactions. To mitigate error accumulation in long-term simulations, we propose a multi-frame rollout training algorithm for diffusion modeling. Experiments conducted on two real-world datasets demonstrate the superior performance of SPDiff in terms of macroscopic and microscopic evaluation metrics. Code and appendix are available at https://github.com/tsinghua-fib-lab/SPDiff.


Estimating On-road Transportation Carbon Emissions from Open Data of Road Network and Origin-destination Flow Data

arXiv.org Artificial Intelligence

Accounting for over 20% of the total carbon emissions, the precise estimation of on-road transportation carbon emissions is crucial for carbon emission monitoring and efficient mitigation policy formulation. However, existing estimation methods typically depend on hard-to-collect individual statistics of vehicle miles traveled to calculate emissions, thereby suffering from high data collection difficulty. To relieve this issue by utilizing the strong pattern recognition of artificial intelligence, we incorporate two sources of open data representative of the transportation demand and capacity factors, the origin-destination (OD) flow data and the road network data, to build a hierarchical heterogeneous graph learning method for on-road carbon emission estimation (HENCE). Specifically, a hierarchical graph consisting of the road network level, community level, and region level is constructed to model the multi-scale road network-based connectivity and travel connection between spatial areas. Heterogeneous graphs consisting of OD links and spatial links are further built at both the community level and region level to capture the intrinsic interactions between travel demand and road network accessibility. Extensive experiments on two large-scale real-world datasets demonstrate HENCE's effectiveness and superiority with R-squared exceeding 0.75 and outperforming baselines by 9.60% on average, validating its success in pioneering the use of artificial intelligence to empower carbon emission management and sustainability development. The implementation codes are available at this link: https://github.com/tsinghua-fib-lab/HENCE.


Large Language Models Empowered Agent-based Modeling and Simulation: A Survey and Perspectives

arXiv.org Artificial Intelligence

Agent-based modeling and simulation has evolved as a powerful tool for modeling complex systems, offering insights into emergent behaviors and interactions among diverse agents. Integrating large language models into agent-based modeling and simulation presents a promising avenue for enhancing simulation capabilities. This paper surveys the landscape of utilizing large language models in agent-based modeling and simulation, examining their challenges and promising future directions. In this survey, since this is an interdisciplinary field, we first introduce the background of agent-based modeling and simulation and large language model-empowered agents. We then discuss the motivation for applying large language models to agent-based simulation and systematically analyze the challenges in environment perception, human alignment, action generation, and evaluation. Most importantly, we provide a comprehensive overview of the recent works of large language model-empowered agent-based modeling and simulation in multiple scenarios, which can be divided into four domains: cyber, physical, social, and hybrid, covering simulation of both real-world and virtual environments. Finally, since this area is new and quickly evolving, we discuss the open problems and promising future directions.


Towards Generative Modeling of Urban Flow through Knowledge-enhanced Denoising Diffusion

arXiv.org Artificial Intelligence

Although generative AI has been successful in many areas, its ability to model geospatial data is still underexplored. Urban flow, a typical kind of geospatial data, is critical for a wide range of urban applications. Existing studies mostly focus on predictive modeling of urban flow that predicts the future flow based on historical flow data, which may be unavailable in data-sparse areas or newly planned regions. Some other studies aim to predict OD flow among regions but they fail to model dynamic changes of urban flow over time. In this work, we study a new problem of urban flow generation that generates dynamic urban flow for regions without historical flow data. To capture the effect of multiple factors on urban flow, such as region features and urban environment, we employ diffusion model to generate urban flow for regions under different conditions. We first construct an urban knowledge graph (UKG) to model the urban environment and relationships between regions, based on which we design a knowledge-enhanced spatio-temporal diffusion model (KSTDiff) to generate urban flow for each region. Specifically, to accurately generate urban flow for regions with different flow volumes, we design a novel diffusion process guided by a volume estimator, which is learnable and customized for each region. Moreover, we propose a knowledge-enhanced denoising network to capture the spatio-temporal dependencies of urban flow as well as the impact of urban environment in the denoising process. Extensive experiments on four real-world datasets validate the superiority of our model over state-of-the-art baselines in urban flow generation. Further in-depth studies demonstrate the utility of generated urban flow data and the ability of our model for long-term flow generation and urban flow prediction. Our code is released at: https://github.com/tsinghua-fib-lab/KSTDiff-Urban-flow-generation.


Spatio-temporal Diffusion Point Processes

arXiv.org Artificial Intelligence

Spatio-temporal point process (STPP) is a stochastic collection of events accompanied with time and space. Due to computational complexities, existing solutions for STPPs compromise with conditional independence between time and space, which consider the temporal and spatial distributions separately. The failure to model the joint distribution leads to limited capacities in characterizing the spatio-temporal entangled interactions given past events. In this work, we propose a novel parameterization framework for STPPs, which leverages diffusion models to learn complex spatio-temporal joint distributions. We decompose the learning of the target joint distribution into multiple steps, where each step can be faithfully described by a Gaussian distribution. To enhance the learning of each step, an elaborated spatio-temporal co-attention module is proposed to capture the interdependence between the event time and space adaptively. For the first time, we break the restrictions on spatio-temporal dependencies in existing solutions, and enable a flexible and accurate modeling paradigm for STPPs. Extensive experiments from a wide range of fields, such as epidemiology, seismology, crime, and urban mobility, demonstrate that our framework outperforms the state-of-the-art baselines remarkably, with an average improvement of over 50%. Further in-depth analyses validate its ability to capture spatio-temporal interactions, which can learn adaptively for different scenarios. The datasets and source code are available online: https://github.com/tsinghua-fib-lab/Spatio-temporal-Diffusion-Point-Processes.


Road Planning for Slums via Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Millions of slum dwellers suffer from poor accessibility to urban services due to inadequate road infrastructure within slums, and road planning for slums is critical to the sustainable development of cities. Existing re-blocking or heuristic methods are either time-consuming which cannot generalize to different slums, or yield sub-optimal road plans in terms of accessibility and construction costs. In this paper, we present a deep reinforcement learning based approach to automatically layout roads for slums. We propose a generic graph model to capture the topological structure of a slum, and devise a novel graph neural network to select locations for the planned roads. Through masked policy optimization, our model can generate road plans that connect places in a slum at minimal construction costs. Extensive experiments on real-world slums in different countries verify the effectiveness of our model, which can significantly improve accessibility by 14.3% against existing baseline methods. Further investigations on transferring across different tasks demonstrate that our model can master road planning skills in simple scenarios and adapt them to much more complicated ones, indicating the potential of applying our model in real-world slum upgrading. The code and data are available at https://github.com/tsinghua-fib-lab/road-planning-for-slums.


Complexity-aware Large Scale Origin-Destination Network Generation via Diffusion Model

arXiv.org Artificial Intelligence

The Origin-Destination~(OD) networks provide an estimation of the flow of people from every region to others in the city, which is an important research topic in transportation, urban simulation, etc. Given structural regional urban features, generating the OD network has become increasingly appealing to many researchers from diverse domains. However, existing works are limited in independent generation of each OD pair, i.e., flow of people from one region to another, overlooking the relations within the overall network. In this paper, we instead propose to generate the OD network, and design a graph denoising diffusion method to learn the conditional joint probability distribution of the nodes and edges within the OD network given city characteristics at region level. To overcome the learning difficulty of the OD networks covering over thousands of regions, we decompose the original one-shot generative modeling of the diffusion model into two cascaded stages, corresponding to the generation of network topology and the weights of edges, respectively. To further reproduce important network properties contained in the city-wide OD network, we design an elaborated graph denoising network structure including a node property augmentation module and a graph transformer backbone. Empirical experiments on data collected in three large US cities have verified that our method can generate OD matrices for new cities with network statistics remarkably similar with the ground truth, further achieving superior outperformance over competitive baselines in terms of the generation realism.