Dimakis, Alexandros G.
Orthogonal NMF through Subspace Exploration
Asteris, Megasthenis, Papailiopoulos, Dimitris, Dimakis, Alexandros G.
Orthogonal Nonnegative Matrix Factorization {(ONMF)} aims to approximate a nonnegative matrix as the product of two $k$-dimensional nonnegative factors, one of which has orthonormal columns. It yields potentially useful data representations as superposition of disjoint parts, while it has been shown to work well for clustering tasks where traditional methods underperform. Existing algorithms rely mostly on heuristics, which despite their good empirical performance, lack provable performance guarantees.We present a new ONMF algorithm with provable approximation guarantees.For any constant dimension~$k$, we obtain an additive EPTAS without any assumptions on the input. Our algorithm relies on a novel approximation to the related Nonnegative Principal Component Analysis (NNPCA) problem; given an arbitrary data matrix, NNPCA seeks $k$ nonnegative components that jointly capture most of the variance. Our NNPCA algorithm is of independent interest and generalizes previous work that could only obtain guarantees for a single component. We evaluate our algorithms on several real and synthetic datasets and show that their performance matches or outperforms the state of the art.
Learning Causal Graphs with Small Interventions
Shanmugam, Karthikeyan, Kocaoglu, Murat, Dimakis, Alexandros G., Vishwanath, Sriram
We consider the problem of learning causal networks with interventions, when each intervention is limited in size under Pearl's Structural Equation Model with independent errors (SEM-IE). The objective is to minimize the number of experiments to discover the causal directions of all the edges in a causal graph. Previous work has focused on the use of separating systems for complete graphs for this task. We prove that any deterministic adaptive algorithm needs to be a separating system in order to learn complete graphs in the worst case. In addition, we present a novel separating system construction, whose size is close to optimal and is arguably simpler than previous work in combinatorics. We also develop a novel information theoretic lower bound on the number of interventions that applies in full generality, including for randomized adaptive learning algorithms. For general chordal graphs, we derive worst case lower bounds on the number of interventions. Building on observations about induced trees, we give a new deterministic adaptive algorithm to learn directions on any chordal skeleton completely. In the worst case, our achievable scheme is an $\alpha$-approximation algorithm where $\alpha$ is the independence number of the graph. We also show that there exist graph classes for which the sufficient number of experiments is close to the lower bound. In the other extreme, there are graph classes for which the required number of experiments is multiplicatively $\alpha$ away from our lower bound. In simulations, our algorithm almost always performs very close to the lower bound, while the approach based on separating systems for complete graphs is significantly worse for random chordal graphs.
Learning Causal Graphs with Small Interventions
Shanmugam, Karthikeyan, Kocaoglu, Murat, Dimakis, Alexandros G., Vishwanath, Sriram
We consider the problem of learning causal networks with interventions, when each intervention is limited in size under Pearl's Structural Equation Model with independent errors (SEM-IE). The objective is to minimize the number of experiments to discover the causal directions of all the edges in a causal graph. Previous work has focused on the use of separating systems for complete graphs for this task. We prove that any deterministic adaptive algorithm needs to be a separating system in order to learn complete graphs in the worst case. In addition, we present a novel separating system construction, whose size is close to optimal and is arguably simpler than previous work in combinatorics. We also develop a novel information theoretic lower bound on the number of interventions that applies in full generality, including for randomized adaptive learning algorithms. For general chordal graphs, we derive worst case lower bounds on the number of interventions. Building on observations about induced trees, we give a new deterministic adaptive algorithm to learn directions on any chordal skeleton completely. In the worst case, our achievable scheme is an $\alpha$-approximation algorithm where $\alpha$ is the independence number of the graph. We also show that there exist graph classes for which the sufficient number of experiments is close to the lower bound. In the other extreme, there are graph classes for which the required number of experiments is multiplicatively $\alpha$ away from our lower bound. In simulations, our algorithm almost always performs very close to the lower bound, while the approach based on separating systems for complete graphs is significantly worse for random chordal graphs.
Sparse PCA via Bipartite Matchings
Asteris, Megasthenis, Papailiopoulos, Dimitris, Kyrillidis, Anastasios, Dimakis, Alexandros G.
We consider the following multi-component sparse PCA problem: given a set of data points, we seek to extract a small number of sparse components with disjoint supports that jointly capture the maximum possible variance. These components can be computed one by one, repeatedly solving the single-component problem and deflating the input data matrix, but as we show this greedy procedure is suboptimal. We present a novel algorithm for sparse PCA that jointly optimizes multiple disjoint components. The extracted features capture variance that lies within a multiplicative factor arbitrarily close to 1 from the optimal. Our algorithm is combinatorial and computes the desired components by solving multiple instances of the bipartite maximum weight matching problem. Its complexity grows as a low order polynomial in the ambient dimension of the input data matrix, but exponentially in its rank. However, it can be effectively applied on a low-dimensional sketch of the data; this allows us to obtain polynomial-time approximation guarantees via spectral bounds. We evaluate our algorithm on real data-sets and empirically demonstrate that in many cases it outperforms existing, deflation-based approaches.
Stay on path: PCA along graph paths
Asteris, Megasthenis, Kyrillidis, Anastasios, Dimakis, Alexandros G., and, Han-Gyol Yi, Chandrasekaran, Bharath
We introduce a variant of (sparse) PCA in which the set of feasible support sets is determined by a graph. In particular, we consider the following setting: given a directed acyclic graph $G$ on $p$ vertices corresponding to variables, the non-zero entries of the extracted principal component must coincide with vertices lying along a path in $G$. From a statistical perspective, information on the underlying network may potentially reduce the number of observations required to recover the population principal component. We consider the canonical estimator which optimally exploits the prior knowledge by solving a non-convex quadratic maximization on the empirical covariance. We introduce a simple network and analyze the estimator under the spiked covariance model. We show that side information potentially improves the statistical complexity. We propose two algorithms to approximate the solution of the constrained quadratic maximization, and recover a component with the desired properties. We empirically evaluate our schemes on synthetic and real datasets.
Sparse Polynomial Learning and Graph Sketching
Kocaoglu, Murat, Shanmugam, Karthikeyan, Dimakis, Alexandros G., Klivans, Adam
Let $f: \{-1,1\}^n \rightarrow \mathbb{R}$ be a polynomial with at most $s$ non-zero real coefficients. We give an algorithm for exactly reconstructing $f$ given random examples from the uniform distribution on $\{-1,1\}^n$ that runs in time polynomial in $n$ and $2^{s}$ and succeeds if the function satisfies the \textit{unique sign property}: there is one output value which corresponds to a unique set of values of the participating parities. This sufficient condition is satisfied when every coefficient of $f$ is perturbed by a small random noise, or satisfied with high probability when $s$ parity functions are chosen randomly or when all the coefficients are positive. Learning sparse polynomials over the Boolean domain in time polynomial in $n$ and $2^{s}$ is considered notoriously hard in the worst-case. Our result shows that the problem is tractable for almost all sparse polynomials. Then, we show an application of this result to hypergraph sketching which is the problem of learning a sparse (both in the number of hyperedges and the size of the hyperedges) hypergraph from uniformly drawn random cuts. We also provide experimental results on a real world dataset.
On the Information Theoretic Limits of Learning Ising Models
Tandon, Rashish, Shanmugam, Karthikeyan, Ravikumar, Pradeep K., Dimakis, Alexandros G.
We provide a general framework for computing lower-bounds on the sample complexity of recovering the underlying graphs of Ising models, given i.i.d. samples. While there have been recent results for specific graph classes, these involve fairly extensive technical arguments that are specialized to each specific graph class. In contrast, we isolate two key graph-structural ingredients that can then be used to specify sample complexity lower-bounds. Presence of these structural properties makes the graph class hard to learn. We derive corollaries of our main result that not only recover existing recent results, but also provide lower bounds for novel graph classes not considered previously. We also extend our framework to the random graph setting and derive corollaries for Erdos-Renyi graphs in a certain dense setting.
Sparse PCA through Low-rank Approximations
Papailiopoulos, Dimitris S., Dimakis, Alexandros G., Korokythakis, Stavros
We introduce a novel algorithm that computes the $k$-sparse principal component of a positive semidefinite matrix $A$. Our algorithm is combinatorial and operates by examining a discrete set of special vectors lying in a low-dimensional eigen-subspace of $A$. We obtain provable approximation guarantees that depend on the spectral decay profile of the matrix: the faster the eigenvalue decay, the better the quality of our approximation. For example, if the eigenvalues of $A$ follow a power-law decay, we obtain a polynomial-time approximation algorithm for any desired accuracy. A key algorithmic component of our scheme is a combinatorial feature elimination step that is provably safe and in practice significantly reduces the running complexity of our algorithm. We implement our algorithm and test it on multiple artificial and real data sets. Due to the feature elimination step, it is possible to perform sparse PCA on data sets consisting of millions of entries in a few minutes. Our experimental evaluation shows that our scheme is nearly optimal while finding very sparse vectors. We compare to the prior state of the art and show that our scheme matches or outperforms previous algorithms in all tested data sets.