Dimakis, Alexandros G.
Experimental Design for Cost-Aware Learning of Causal Graphs
Lindgren, Erik, Kocaoglu, Murat, Dimakis, Alexandros G., Vishwanath, Sriram
We consider the minimum cost intervention design problem: Given the essential graph of a causal graph and a cost to intervene on a variable, identify the set of interventions with minimum total cost that can learn any causal graph with the given essential graph. We first show that this problem is NP-hard. We then prove that we can achieve a constant factor approximation to this problem with a greedy algorithm. We then constrain the sparsity of each intervention. We develop an algorithm that returns an intervention design that is nearly optimal in terms of size for sparse graphs with sparse interventions and we discuss how to use it when there are costs on the vertices.
Entropic Latent Variable Discovery
Kocaoglu, Murat, Shakkottai, Sanjay, Dimakis, Alexandros G., Caramanis, Constantine, Vishwanath, Sriram
We consider the problem of discovering the simplest latent variable that can make two observed discrete variables conditionally independent. This problem has appeared in the literature as probabilistic latent semantic analysis (pLSA), and has connections to non-negative matrix factorization. When the simplicity of the variable is measured through its cardinality, we show that a solution to this latent variable discovery problem can be used to distinguish direct causal relations from spurious correlations among almost all joint distributions on simple causal graphs with two observed variables. Conjecturing a similar identifiability result holds with Shannon entropy, we study a loss function that trades-off between entropy of the latent variable and the conditional mutual information of the observed variables. We then propose a latent variable discovery algorithm -- LatentSearch -- and show that its stationary points are the stationary points of our loss function. We experimentally show that LatentSearch can indeed be used to distinguish direct causal relations from spurious correlations.
The Sparse Recovery Autoencoder
Wu, Shanshan, Dimakis, Alexandros G., Sanghavi, Sujay, Yu, Felix X., Holtmann-Rice, Daniel, Storcheus, Dmitry, Rostamizadeh, Afshin, Kumar, Sanjiv
Linear encoding of sparse vectors is widely popular, but is most commonly data-independent -- missing any possible extra (but a-priori unknown) structure beyond sparsity. In this paper we present a new method to learn linear encoders that adapt to data, while still performing well with the widely used $\ell_1$ decoder. The convex $\ell_1$ decoder prevents gradient propagation as needed in standard autoencoder training. Our method is based on the insight that unfolding the convex decoder into $T$ projected gradient steps can address this issue. Our method can be seen as a data-driven way to learn a compressed sensing matrix. Our experiments show that there is indeed additional structure beyond sparsity in several real datasets. Our autoencoder is able to discover it and exploit it to create excellent reconstructions with fewer measurements compared to the previous state of the art methods.
Compressed Sensing with Deep Image Prior and Learned Regularization
Van Veen, David, Jalal, Ajil, Price, Eric, Vishwanath, Sriram, Dimakis, Alexandros G.
We propose a novel method for compressed sensing recovery using untrained deep generative models. Our method is based on the recently proposed Deep Image Prior (DIP), wherein the convolutional weights of the network are optimized to match the observed measurements. We show that this approach can be applied to solve any differentiable inverse problem. We also introduce a novel learned regularization technique which incorporates a small amount of prior information, further reducing the number of measurements required for a given reconstruction error. Our algorithm requires approximately 4-6x fewer measurements than classical Lasso methods. Unlike previous approaches based on generative models, our method does not require the model to be pre-trained. As such, we can apply our method to various medical imaging datasets for which data acquisition is expensive and no known generative models exist.
Streaming Weak Submodularity: Interpreting Neural Networks on the Fly
Elenberg, Ethan, Dimakis, Alexandros G., Feldman, Moran, Karbasi, Amin
In many machine learning applications, it is important to explain the predictions of a black-box classifier. For example, why does a deep neural network assign an image to a particular class? We cast interpretability of black-box classifiers as a combinatorial maximization problem and propose an efficient streaming algorithm to solve it subject to cardinality constraints. By extending ideas from Badanidiyuru et al. [2014], we provide a constant factor approximation guarantee for our algorithm in the case of random stream order and a weakly submodular objective function. This is the first such theoretical guarantee for this general class of functions, and we also show that no such algorithm exists for a worst case stream order.
Model-Powered Conditional Independence Test
Sen, Rajat, Suresh, Ananda Theertha, Shanmugam, Karthikeyan, Dimakis, Alexandros G., Shakkottai, Sanjay
We consider the problem of non-parametric Conditional Independence testing (CI testing) for continuous random variables. Given i.i.d samples from the joint distribution $f(x,y,z)$ of continuous random vectors $X,Y$ and $Z,$ we determine whether $X \independent Y \vert Z$. We approach this by converting the conditional independence test into a classification problem. This allows us to harness very powerful classifiers like gradient-boosted trees and deep neural networks. These models can handle complex probability distributions and allow us to perform significantly better compared to the prior state of the art, for high-dimensional CI testing. The main technical challenge in the classification problem is the need for samples from the conditional product distribution $f^{CI}(x,y,z) = f(x|z)f(y|z)f(z)$ -- the joint distribution if and only if $X \independent Y \vert Z.$ -- when given access only to i.i.d. samples from the true joint distribution $f(x,y,z)$. To tackle this problem we propose a novel nearest neighbor bootstrap procedure and theoretically show that our generated samples are indeed close to $f^{CI}$ in terms of total variational distance. We then develop theoretical results regarding the generalization bounds for classification for our problem, which translate into error bounds for CI testing. We provide a novel analysis of Rademacher type classification bounds in the presence of non-i.i.d \textit{near-independent} samples. We empirically validate the performance of our algorithm on simulated and real datasets and show performance gains over previous methods.
The Robust Manifold Defense: Adversarial Training using Generative Models
Ilyas, Andrew, Jalal, Ajil, Asteri, Eirini, Daskalakis, Constantinos, Dimakis, Alexandros G.
Deep neural networks are demonstrating excellent performance on several classical vision problems. However, these networks are vulnerable to adversarial examples, minutely modified images that induce arbitrary attacker-chosen output from the network. We propose a mechanism to protect against these adversarial inputs based on a generative model of the data. We introduce a pre-processing step that projects on the range of a generative model using gradient descent before feeding an input into a classifier. We show that this step provides the classifier with robustness against first-order, substitute model, and combined adversarial attacks. Using a min-max formulation, we show that there may exist adversarial examples even in the range of the generator, natural-looking images extremely close to the decision boundary for which the classifier has unjustifiedly high confidence. We show that adversarial training on the generative manifold can be used to make a classifier that is robust to these attacks. Finally, we show how our method can be applied even without a pre-trained generative model using a recent method called the deep image prior. We evaluate our method on MNIST, CelebA and Imagenet and show robustness against the current state of the art attacks.
Streaming Weak Submodularity: Interpreting Neural Networks on the Fly
Elenberg, Ethan R., Dimakis, Alexandros G., Feldman, Moran, Karbasi, Amin
In many machine learning applications, it is important to explain the predictions of a black-box classifier. For example, why does a deep neural network assign an image to a particular class? We cast interpretability of black-box classifiers as a combinatorial maximization problem and propose an efficient streaming algorithm to solve it subject to cardinality constraints. By extending ideas from Badanidiyuru et al. [2014], we provide a constant factor approximation guarantee for our algorithm in the case of random stream order and a weakly submodular objective function. This is the first such theoretical guarantee for this general class of functions, and we also show that no such algorithm exists for a worst case stream order. Our algorithm obtains similar explanations of Inception V3 predictions $10$ times faster than the state-of-the-art LIME framework of Ribeiro et al. [2016].
Restricted Strong Convexity Implies Weak Submodularity
Elenberg, Ethan R., Khanna, Rajiv, Dimakis, Alexandros G., Negahban, Sahand
We connect high-dimensional subset selection and submodular maximization. Our results extend the work of Das and Kempe (2011) from the setting of linear regression to arbitrary objective functions. For greedy feature selection, this connection allows us to obtain strong multiplicative performance bounds on several methods without statistical modeling assumptions. We also derive recovery guarantees of this form under standard assumptions. Our work shows that greedy algorithms perform within a constant factor from the best possible subset-selection solution for a broad class of general objective functions. Our methods allow a direct control over the number of obtained features as opposed to regularization parameters that only implicitly control sparsity. Our proof technique uses the concept of weak submodularity initially defined by Das and Kempe. We draw a connection between convex analysis and submodular set function theory which may be of independent interest for other statistical learning applications that have combinatorial structure.
Model-Powered Conditional Independence Test
Sen, Rajat, Suresh, Ananda Theertha, Shanmugam, Karthikeyan, Dimakis, Alexandros G., Shakkottai, Sanjay
We consider the problem of non-parametric Conditional Independence testing (CI testing) for continuous random variables. Given i.i.d samples from the joint distribution $f(x,y,z)$ of continuous random vectors $X,Y$ and $Z,$ we determine whether $X \perp Y | Z$. We approach this by converting the conditional independence test into a classification problem. This allows us to harness very powerful classifiers like gradient-boosted trees and deep neural networks. These models can handle complex probability distributions and allow us to perform significantly better compared to the prior state of the art, for high-dimensional CI testing. The main technical challenge in the classification problem is the need for samples from the conditional product distribution $f^{CI}(x,y,z) = f(x|z)f(y|z)f(z)$ -- the joint distribution if and only if $X \perp Y | Z.$ -- when given access only to i.i.d. samples from the true joint distribution $f(x,y,z)$. To tackle this problem we propose a novel nearest neighbor bootstrap procedure and theoretically show that our generated samples are indeed close to $f^{CI}$ in terms of total variational distance. We then develop theoretical results regarding the generalization bounds for classification for our problem, which translate into error bounds for CI testing. We provide a novel analysis of Rademacher type classification bounds in the presence of non-i.i.d near-independent samples. We empirically validate the performance of our algorithm on simulated and real datasets and show performance gains over previous methods.