Plotting

 Dhamala, Jwala


Generative Modeling and Inverse Imaging of Cardiac Transmembrane Potential

arXiv.org Machine Learning

Noninvasive reconstruction of cardiac transmembrane potential (TMP) from surface electrocardiograms (ECG) involves an ill-posed inverse problem. Model-constrained regularization is powerful for incorporating rich physiological knowledge about spatiotemporal TMP dynamics. These models are controlled by high-dimensional physical parameters which, if fixed, can introduce model errors and reduce the accuracy of TMP reconstruction. Simultaneous adaptation of these parameters during TMP reconstruction, however, is difficult due to their high dimensionality. We introduce a novel model-constrained inference framework that replaces conventional physiological models with a deep generative model trained to generate TMP sequences from low-dimensional generative factors. Using a variational auto-encoder (VAE) with long short-term memory (LSTM) networks, we train the VAE decoder to learn the conditional likelihood of TMP, while the encoder learns the prior distribution of generative factors. These two components allow us to develop an efficient algorithm to simultaneously infer the generative factors and TMP signals from ECG data. Synthetic and real-data experiments demonstrate that the presented method significantly improve the accuracy of TMP reconstruction compared with methods constrained by conventional physiological models or without physiological constraints.


Improving Generalization of Deep Networks for Inverse Reconstruction of Image Sequences

arXiv.org Machine Learning

Deep learning networks have shown state-of-the-art performance in many image reconstruction problems. However, it is not well understood what properties of representation and learning may improve the generalization ability of the network. In this paper, we propose that the generalization ability of an encoder-decoder network for inverse reconstruction can be improved in two means. First, drawing from analytical learning theory, we theoretically show that a stochastic latent space will improve the ability of a network to generalize to test data outside the training distribution. Second, following the information bottleneck principle, we show that a latent representation minimally informative of the input data will help a network generalize to unseen input variations that are irrelevant to the output reconstruction. Therefore, we present a sequence image reconstruction network optimized by a variational approximation of the information bottleneck principle with stochastic latent space. In the application setting of reconstructing the sequence of cardiac transmembrane potential from bodysurface potential, we assess the two types of generalization abilities of the presented network against its deterministic counterpart. The results demonstrate that the generalization ability of an inverse reconstruction network can be improved by stochasticity as well as the information bottleneck.


Multivariate Time-series Similarity Assessment via Unsupervised Representation Learning and Stratified Locality Sensitive Hashing: Application to Early Acute Hypotensive Episode Detection

arXiv.org Artificial Intelligence

Timely prediction of clinically critical events in Intensive Care Unit (ICU) is important for improving care and survival rate. Most of the existing approaches are based on the application of various classification methods on explicitly extracted statistical features from vital signals. In this work, we propose to eliminate the high cost of engineering hand-crafted features from multivariate time-series of physiologic signals by learning their representation with a sequence-to-sequence auto-encoder. We then propose to hash the learned representations to enable signal similarity assessment for the prediction of critical events. We apply this methodological framework to predict Acute Hypotensive Episodes (AHE) on a large and diverse dataset of vital signal recordings. Experiments demonstrate the ability of the presented framework in accurately predicting an upcoming AHE.