Plotting

 Deschaintre, Valentin


The Visual Language of Fabrics

arXiv.org Artificial Intelligence

We introduce text2fabric, a novel dataset that links free-text descriptions to various fabric materials. The dataset comprises 15,000 natural language descriptions associated to 3,000 corresponding images of fabric materials. Traditionally, material descriptions come in the form of tags/keywords, which limits their expressivity, induces pre-existing knowledge of the appropriate vocabulary, and ultimately leads to a chopped description system. Therefore, we study the use of free-text as a more appropriate way to describe material appearance, taking the use case of fabrics as a common item that non-experts may often deal with. Based on the analysis of the dataset, we identify a compact lexicon, set of attributes and key structure that emerge from the descriptions. This allows us to accurately understand how people describe fabrics and draw directions for generalization to other types of materials. We also show that our dataset enables specializing large vision-language models such as CLIP, creating a meaningful latent space for fabric appearance, and significantly improving applications such as fine-grained material retrieval and automatic captioning.


PhotoMat: A Material Generator Learned from Single Flash Photos

arXiv.org Artificial Intelligence

Authoring high-quality digital materials is key to realism in 3D rendering. Previous generative models for materials have been trained exclusively on synthetic data; such data is limited in availability and has a visual gap to real materials. We circumvent this limitation by proposing PhotoMat: the first material generator trained exclusively on real photos of material samples captured using a cell phone camera with flash. Supervision on individual material maps is not available in this setting. Instead, we train a generator for a neural material representation that is rendered with a learned relighting module to create arbitrarily lit RGB images; these are compared against real photos using a discriminator. We then train a material maps estimator to decode material reflectance properties from the neural material representation. We train PhotoMat with a new dataset of 12,000 material photos captured with handheld phone cameras under flash lighting. We demonstrate that our generated materials have better visual quality than previous material generators trained on synthetic data. Moreover, we can fit analytical material models to closely match these generated neural materials, thus allowing for further editing and use in 3D rendering.


Materialistic: Selecting Similar Materials in Images

arXiv.org Artificial Intelligence

Separating an image into meaningful underlying components is a crucial first step for both editing and understanding images. We present a method capable of selecting the regions of a photograph exhibiting the same material as an artist-chosen area. Our proposed approach is robust to shading, specular highlights, and cast shadows, enabling selection in real images. As we do not rely on semantic segmentation (different woods or metal should not be selected together), we formulate the problem as a similarity-based grouping problem based on a user-provided image location. In particular, we propose to leverage the unsupervised DINO features coupled with a proposed Cross-Similarity module and an MLP head to extract material similarities in an image. We train our model on a new synthetic image dataset, that we release. We show that our method generalizes well to real-world images. We carefully analyze our model's behavior on varying material properties and lighting. Additionally, we evaluate it against a hand-annotated benchmark of 50 real photographs. We further demonstrate our model on a set of applications, including material editing, in-video selection, and retrieval of object photographs with similar materials.