Deng, Yang
A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects
Deng, Yang, Lei, Wenqiang, Lam, Wai, Chua, Tat-Seng
Proactive dialogue systems, related to a wide range of real-world conversational applications, equip the conversational agent with the capability of leading the conversation direction towards achieving pre-defined targets or fulfilling certain goals from the system side. It is empowered by advanced techniques to progress to more complicated tasks that require strategical and motivational interactions. In this survey, we provide a comprehensive overview of the prominent problems and advanced designs for conversational agent's proactivity in different types of dialogues. Furthermore, we discuss challenges that meet the real-world application needs but require a greater research focus in the future. We hope that this first survey of proactive dialogue systems can provide the community with a quick access and an overall picture to this practical problem, and stimulate more progresses on conversational AI to the next level.
Product Question Answering in E-Commerce: A Survey
Deng, Yang, Zhang, Wenxuan, Yu, Qian, Lam, Wai
Product question answering (PQA), aiming to automatically provide instant responses to customer's questions in E-Commerce platforms, has drawn increasing attention in recent years. Compared with typical QA problems, PQA exhibits unique challenges such as the subjectivity and reliability of user-generated contents in E-commerce platforms. Therefore, various problem settings and novel methods have been proposed to capture these special characteristics. In this paper, we aim to systematically review existing research efforts on PQA. Specifically, we categorize PQA studies into four problem settings in terms of the form of provided answers. We analyze the pros and cons, as well as present existing datasets and evaluation protocols for each setting. We further summarize the most significant challenges that characterize PQA from general QA applications and discuss their corresponding solutions. Finally, we conclude this paper by providing the prospect on several future directions.
PACIFIC: Towards Proactive Conversational Question Answering over Tabular and Textual Data in Finance
Deng, Yang, Lei, Wenqiang, Zhang, Wenxuan, Lam, Wai, Chua, Tat-Seng
To facilitate conversational question answering (CQA) over hybrid contexts in finance, we present a new dataset, named PACIFIC. Compared with existing CQA datasets, PACIFIC exhibits three key features: (i) proactivity, (ii) numerical reasoning, and (iii) hybrid context of tables and text. A new task is defined accordingly to study Proactive Conversational Question Answering (PCQA), which combines clarification question generation and CQA. In addition, we propose a novel method, namely UniPCQA, to adapt a hybrid format of input and output content in PCQA into the Seq2Seq problem, including the reformulation of the numerical reasoning process as code generation. UniPCQA performs multi-task learning over all sub-tasks in PCQA and incorporates a simple ensemble strategy to alleviate the error propagation issue in the multi-task learning by cross-validating top-$k$ sampled Seq2Seq outputs. We benchmark the PACIFIC dataset with extensive baselines and provide comprehensive evaluations on each sub-task of PCQA.
Deep Active Learning for Scientific Computing in the Wild
Ren, Simiao, Deng, Yang, Padilla, Willie J., Collins, Leslie, Malof, Jordan
Deep learning (DL) is revolutionizing the scientific computing community. To reduce the data gap caused by usually expensive simulations or experimentation, active learning has been identified as a promising solution for the scientific computing community. However, the deep active learning (DAL) literature is currently dominated by image classification problems and pool-based methods, which are not directly transferrable to scientific computing problems, dominated by regression problems with no pre-defined 'pool' of unlabeled data. Here for the first time, we investigate the robustness of DAL methods for scientific computing problems using ten state-of-the-art DAL methods and eight benchmark problems. We show that, to our surprise, the majority of the DAL methods are not robust even compared to random sampling when the ideal pool size is unknown. We further analyze the effectiveness and robustness of DAL methods and suggest that diversity is necessary for a robust DAL for scientific computing problems.
A Survey on Aspect-Based Sentiment Analysis: Tasks, Methods, and Challenges
Zhang, Wenxuan, Li, Xin, Deng, Yang, Bing, Lidong, Lam, Wai
As an important fine-grained sentiment analysis problem, aspect-based sentiment analysis (ABSA), aiming to analyze and understand people's opinions at the aspect level, has been attracting considerable interest in the last decade. To handle ABSA in different scenarios, various tasks are introduced for analyzing different sentiment elements and their relations, including the aspect term, aspect category, opinion term, and sentiment polarity. Unlike early ABSA works focusing on a single sentiment element, many compound ABSA tasks involving multiple elements have been studied in recent years for capturing more complete aspect-level sentiment information. However, a systematic review of various ABSA tasks and their corresponding solutions is still lacking, which we aim to fill in this survey. More specifically, we provide a new taxonomy for ABSA which organizes existing studies from the axes of concerned sentiment elements, with an emphasis on recent advances of compound ABSA tasks. From the perspective of solutions, we summarize the utilization of pre-trained language models for ABSA, which improved the performance of ABSA to a new stage. Besides, techniques for building more practical ABSA systems in cross-domain/lingual scenarios are discussed. Finally, we review some emerging topics and discuss some open challenges to outlook potential future directions of ABSA.
Hyperparameter-free deep active learning for regression problems via query synthesis
Ren, Simiao, Deng, Yang, Padilla, Willie J., Malof, Jordan
In the past decade, deep active learning (DAL) has heavily focused upon classification problems, or problems that have some 'valid' data manifolds, such as natural languages or images. As a result, existing DAL methods are not applicable to a wide variety of important problems -- such as many scientific computing problems -- that involve regression on relatively unstructured input spaces. In this work we propose the first DAL query-synthesis approach for regression problems. We frame query synthesis as an inverse problem and use the recently-proposed neural-adjoint (NA) solver to efficiently find points in the continuous input domain that optimize the query-by-committee (QBC) criterion. Crucially, the resulting NA-QBC approach removes the one sensitive hyperparameter of the classical QBC active learning approach - the "pool size"- making NA-QBC effectively hyperparameter free. This is significant because DAL methods can be detrimental, even compared to random sampling, if the wrong hyperparameters are chosen. We evaluate Random, QBC and NA-QBC sampling strategies on four regression problems, including two contemporary scientific computing problems. We find that NA-QBC achieves better average performance than random sampling on every benchmark problem, while QBC can be detrimental if the wrong hyperparameters are chosen.
Research on AI Composition Recognition Based on Music Rules
Deng, Yang, Xu, Ziyao, Zhou, Li, Liu, Huanping, Huang, Anqi
The development of artificial intelligent composition has resulted in the increasing popularity of machine-generated pieces, with frequent copyright disputes consequently emerging. There is an insufficient amount of research on the judgement of artificial and machine-generated works; the creation of a method to identify and distinguish these works is of particular importance. Starting from the essence of the music, the article constructs a music-rule-identifying algorithm through extracting modes, which will identify the stability of the mode of machine-generated music, to judge whether it is artificial intelligent. The evaluation datasets used are provided by the Conference on Sound and Music Technology(CSMT). Experimental results demonstrate the algorithm to have a successful distinguishing ability between datasets with different source distributions. The algorithm will also provide some technological reference to the benign development of the music copyright and artificial intelligent music.
Efforts estimation of doctors annotating medical image
Deng, Yang, Sun, Yao, Zhu, Yongpei, Xu, Yue, Yang, Qianxi, Zhang, Shuo, Zhu, Mingwang, Sun, Jirang, Zhao, Weiling, Zhou, Xiaobo, Yuan, Kehong
Accurate annotation of medical image is the crucial step for image AI clinical application. However, annotating medical image will incur a great deal of annotation effort and expense due to its high complexity and needing experienced doctors. To alleviate annotation cost, some active learning methods are proposed. But such methods just cut the number of annotation candidates and do not study how many efforts the doctor will exactly take, which is not enough since even annotating a small amount of medical data will take a lot of time for the doctor. In this paper, we propose a new criterion to evaluate efforts of doctors annotating medical image. First, by coming active learning and U-shape network, we employ a suggestive annotation strategy to choose the most effective annotation candidates. Then we exploit a fine annotation platform to alleviate annotating efforts on each candidate and first utilize a new criterion to quantitatively calculate the efforts taken by doctors. In our work, we take MR brain tissue segmentation as an example to evaluate the proposed method. Extensive experiments on the well-known IBSR18 dataset and MRBrainS18 Challenge dataset show that, using proposed strategy, state-of-the-art segmentation performance can be achieved by using only 60% annotation candidates and annotation efforts can be alleviated by at least 44%, 44%, 47% on CSF, GM, WM separately.
Approach for Semi-automatic Construction of Anti-infective Drug Ontology Based on Entity Linking
Shen, Ying, Deng, Yang, Yuan, Kaiqi, Liu, Li, Liu, Yong
The task of entity relation extraction discovers new relation facts and enables broader applications of knowledge graph. Distant supervision is widely adopted for relation extraction, which requires large amounts of texts containing entity pairs as training data. However, in some specific domains such as medicalrelated applications,entity pairs that have certain relations might not appear together, thus it is difficult to meet the requirement for distantly supervised relation extraction. In the light of this challenge, we propose a novel path-based model to discover new entity relation facts. Instead of finding texts for relation extraction, the proposed method extracts path-only information for entity pairs from the current knowledgegraph. For each pair of entities, multiple paths can be extracted, and some of them are more useful for relation extraction than others. In order to capture this observation, we employ attention mechanism to assign different weights for different paths, which highlights the useful paths for entity relation extraction. To demonstrate the effectiveness of the proposed method, we conduct various experiments on a large-scale medical knowledge graph. Compared with the state-of-the-art relation extraction methods using the structure of knowledge graph, the proposed method significantly improves the accuracy of extracted relation factsand achieves the best performance.